
ARD-RJL2i 867 SYMBOLIC ERROR ANALYSIS AND ROBOT PLANNING(U3
MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL
INTELLIGENCE LAB R A BROOKS SEP 82 AI-N-685

UNCLASSIFIED N9BBi4-gi-K-8494 F/G 9/2 NLEhhhhhhhhhhiE
EllllllllllhlE
lllIIhlllllllE

HUEN
I//I//I//////

J&.2

.40

IIJL -11111- 1.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1I963-A

_77

I*

-S

Ia
i/

- . . - .

, .

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTILLIGENCE LABORATORY

A.I. Memo No. 685 September, 1982

Symbolic Error Analysis and Robot Planning

Rodney A. Brooks

-- Abstract>A program to control a robot manipulator for industrial assembly operations must

take into account possible errors in parts placement and tolerances of the parts themselves.
Previous approaches to this problem have been to 44 engineer the situation so that the

errors are small or J) let. the programmer analyze the errors and take explicit account
of them. This paper gives the mathematical underpinnings for building programs (plan
checkers) to carry out approach '(2) automatically. The plan checker uses a geometric
CAD-type database to infer the effects of actions and the propagation of errors. It does
this symbolically rather than numerically, so that computations can be reversed and desired
resultant tolerances can be used to infer required initial tolerances or the necessity for
sensing. The checker modifies plans to include sensing and adds constraints to the plan
which ensure that it will succeed. An implemented system is described and results of its

Qi. execution are presented. The plan checker could be used as part of an automatic planning

[1 3 system or as an aid to a human robot programmer. ~

!tJ.J

Acknowledgements. This report describes research done at the Artificial Intelligence
Laboratory of the Massachusetts Institute of Technology. Support for the Laboratory's

*Artificial Intelligence research it provided in part by the Office of Naval Research un.
der Office of Naval Research contract N00014-81-.K-0494 and in part by the Advance I

8Research Projects Agency under O01ice of Naval Research contract N00014-80-0-0505.,

1

82 ii 1 031

Task

Robot Plan
Ianner - Checker

-- I"Robot

i • , _ Controller
joll

Figure 1. Robot systems considered in this paper consist of three agents. A robot controller,
a plan checker and a combined robot controller and robot manipulator.

Sc.

1. Introduction

This paper presents a method for checking and modifying robot plans to ensure that

they will work given mechanical errors in placement and orientation of workpieces, and

ranges of tolerances in the construction of the workpieces themselves. The paper goes on

to suggest how the same method might be used to generate complex robot plans in the first

place.

A robot plan is a program for a robot controller. It describes the motions to be made

by the robot and the sense operations to carried out. It is a computer program and includes

branches conditional o aenme operatioms.

Automatic generation of plans for robots is a rich field of research that has many

2

17-

unsolved problems. Very few attempts have been made to build programs which completely

and automatically generate a robot plan, then command the robot to actually carry it out.

Section 6 mentions some previous attempts and their successes and shortcomings. Most

tasks carried out by today's robots, even in centers of Artificial Intelligence research, are

planned by people.

The term robot planner is used to refer to an agent planning to use a robot manipulator

to perform sonic task. A robot planner may either be a person planning the actions to be

carried out by a robot, or an intelligent program performing the same task. Even for people,

the task is quite difficult and it is worthwhile building automatic aids.

This paper provides the underpinnings for building programs that can automatically

check whether a plan generated by a robot'planner is feasible, i.e. whether it is applicable

and under what circumstances it will achieve the goals set by the robot planner. Such pro-

grams are called plan checkers. In addition, plan checkers can at times provide information

on how to fix a plan to ensure that it will work.

* After a plan has been checked, a robot controller executes the plan, using a robot

manipulator and .sensors to interact with the physical world. The plan checker must reason

about the capabilities of the robot controller in order to check and modify plans for the

computations that the controller will make in interpreting sensor readings.

In many implementations of robot systems the distinctions between the three agents,

planner, checker and controller, will be much fuszier than shown in figure 1.

1.1 Uncertainties.

A major thrust of this work is in ensuring that a plan will succeed in spite of uncer-

tainties in the physical world whose values can not be exactly determined at the time th

plan is formulated. There are three major sources of uncertainties. Dstr u £N An

-Avail and/or-

Dict Special

/I
a '"-- ,,, m,, -:- ,&, m .._imm.._ ,,, i, _.Lm~wdm..,,. m mnamm ..

1. Robot manipulators are complex mechanical devices. There are upper bounds on speed

and payload, and limits to accuracy and repeatability, The absolute positional accuracy of

a manipulator is the error in thai .:esults when it is instructed to position its end effector

at a specified position and orientation in space. This may depend on temperature, load,

speed of movement and the particular position within its work area. Furthermore, in a

situation where these parameters are all fixed, a manipulator will not in general return to

precisely the same location and orientation when commanded to repeat an operation over

and over. The error measures the positional repeatability. rhere can be contributions from

stochastic effects, and from long term drift effects which can be corrected by calibration.

The positional and repeatability errors of current manipulators are sufficiently large to

cause problems in carrying out a large class of planned tasks in the absence of feedback

during plan execution. Manipulators can be made more accurate by machining their parts

more accurately and using more resilient materials. There is however a tradeoff between

cost and performance of manipulators, so that there is a point of diminishing returns in

trying to build ever more accurate mechanisms.

2. To make matters worse for the robot planner, multiple copies of a mechanical part are

never identical in all their dimensions. It is impossible to manufacture parts with exact

specifications. Instead, designers specify tolerances for lengths, diameters, and angles.

Parts made from the design can take on any physical values for the parameters which fall

within the designed tolerances. The effects of these variations might be large enough by

themselves to be a significant factor in the success or failure of a planned robot manipulator

task. When many parts are assembled into a whole, the individual small variations can

combine and become large.

3. Often the most significant source of uncertainty is the position and oriontation of a

workpiece when it is first introduced into the task. Mechanical feeders sometimes deliver

parts with large uncertainties in position and orientation, sometimes on the order of 50%

of the sie of the part. Conveyor belts deliver parts with even larger uncortainties. A robot

plann,!r often includes actions in the plan that are aimed at significantly reducing these

initial uncertainties. The methods described in this paper can be used to analyze those

4

subplans also.

A plan for a robot to carry out a task must take into account these three sources of

uncertainty if it is to be guaranteed to succeed. There are two standard responses to the

problems of uncertainties. One is to ignore them, based on the assumption that they are

too small to affect the success or the plan based on nominal values. (Significant engineering

may be necessary to ensure the validity of such an assumption, e.g. the construction of jigs

and pallets.) A second is to estimate the uncertainties, compute the effects of uncertainties,

and then decide if they are too large for the plan to work. This paper offers a third

approach. It consists of computing the effects of the uncertainties symbolically. If they

are small enough, the plan can be accepted. Otherwise the most significant uncertainties

can be identified, and the plan can then either be constrained to succeed in spite of them,

methods can be identified to reduce those uncertainties, or the plan can be modified to use

a different approach which can succeed.

Throughout the paper uncertainty is used rather than error. This is intended to stress

that robot plans can take into account what are traditionally called errors, and deal with

them in a manner which ensures that the plans will succeed.

The theme of this paper is that while uncertain situations are hard to compute with

directly, it is possible to make inferences about uncertainties and compute with those

inferences.

1.2 Plans.

Minsky (1963) introduced the notion of hierarchically decomposing a plan into sub-

plans, called planning islands. A plan is split up into a linear sequence of smaller subplans

see figure 2. Each level is more detailed. The levels are often called levels of abstraction.

The process of planning then consists of making a top-level plan less and less abstract by

decomposing it into subplans, and filling in details at the lower levels.

5

1.

.4

<C) _C)•

Figure 2. PJlaw m be decomposed tbiarcbically into slubplans. Any particuiar subplan,
e.g. A or B, can be abstractly viewed as a complete plan -to get from the state left by its
left neighbar to the stae desimed by i t right neighbor.

There are various constraints that link the rime 4etailed subplans together. For

instance, if subpian Ai followed immediately by subptan B, then at entry to subplan

R? the robot planner assumes the state or the world to be that upon exit from oubplan A.

Thus each subplan imposes constraints on subplans that follow. Dually, a subplan inherits

constraints from preceeding subplans.

At any stage of a planning process there may be many decisions that have been

deferred until later constraints generated by the planning process have been checked (this is

commonly referred to as posting constraints, e.g. Sacordoti (1977), Stafik (1901)). There is

6

Initial Action Final
State State

Figure 3. At any level of abstraction a plan consists of specifications of the initial and final
states along with an action to effect the transition.

little advantange to making a decision until absolutely necessary. Instead, facts that affect

a decision should be collected along the way and the decision should be made only when

it is forced. Eventually the combined effects of the facts affecting a decision have been

propagated and it simply remains to make all of the outstanding decisions while satisfying

the constraints.

Each subplan can be considered at some level of abstraction to conform to the scheme

of figure 3. There is a class of possible initial states of the *orld (which should include all

states which meet the conditions imposed by the previous subplan in the chain). There is

a class of possible final states of the world. The action is a mapping from initial states to

final states. The possible final states should be a subset of the initial states which can be

handled by the following mubplan.

Figure 4 shows a plan that has been modified to include some sensing operations. The

role of the robot controller is now clear. It must interpret the sensory data and relate it to

parameters of the planned action.

7

1 tt tt

Thus a robot planner must maintain two models. une is a model of the world. The

other is a model of the state of knowledge of the robot controller (which will perhaps be

itself) at the time the plan is being executed. The robot planner must reason about the

interpretation capabilities or the robot controller, in terms of the knowledge it will have

from sensory data and its knowledge retained from previous plan steps.

It is assumed for simplicity that a plan generated by the robot planner corresponds

to figure 3. The plan may include sensing operations but they may be considered to be

hidden in the black box of the initial state. The plan checker need only concern itself with

sensing operations that it suggested. In reality, the robot planner and plan checker may

well be highly integrated, or even indistinguishable. The essence of the model presented

here nevertheless remains valid in that context.

The approach to plan checking presented here makes no particular commitment to the

style of planning used to generate the plans originally. in fact section 6.2 discusses ways

to use it in two different planing systems working on the same problem. The mathematics

and semantics of plans are more central concerns.

1.3 Fixing Plans.

When a plan checker is checking a subplan, there are a number of possible outcomes.

The following six are considered here.

OUTCOME 1: It can accept the plan as workable, perhaps adding further constraints.

OUTCOME 2: It can add sensing operations to provide more accurate execution-time

information to the robot controller, to ensure that the plan will work.

OUTCOME 3: It can change the pre-conditions it requires from previous subplans in order

to ensure that the plan works.

8

Initial Sense Interpretation Action Final

State Operation State

Figure 4. A plan can include an explicit sensing phase. This does not change the initial

state of the world, but it does change the robot's knowledge of the state of the world. The
robot controller must do some reasoning at plan execution time to interpret the sensory
data.

OUTCOME 4: It can do any of 1, 2, or 3 with the additional caveat that the final state will

not meet constraints as tight as those currently required by the next subplan in the chain.

OUTCOME 5: It. can reject the plan if it determines that there are no sensing operations

available that are powerful enough to guarantee that the action will be applicable.

OUTCOME 6: It can reject the plan if it is deemed geometrically infeasible independent of

how much the uncertainties in the physical system can be reduced by sensing operations.

The aigorithm presented later in this paper has five of these six possible outcomes. In

addition a mathematical model is developed which provides a framework for designing such

algorithms given any suitable mechanism for inference on constraints.

r
r-
I , .

1.4 Outline of the Paper.

The paper approaches plan checking in three ways.

1. Section 2 presents two examples of the use of symbolic algebra and reasoning to analyze

uncertainties in physical situations.

The first example is a single step in a plan presented in full detail. The algebraic

expressions involved have the complexity that can be expected in realistic plan checking

tasks. It is due to Taylor (1976). lie estimated errors in an assembly task by propagat-

ing numerical errors forward through a geometric model of a physical situation. In this

paper, however, symbolic expressions are computed and propagated. Once the algebraic

inequalities are set up, it is possible to use them in several ways. First following Taylor, the

initial constraints can be fixed and the results computed. Second, the desired results can

be fixed and the constraints those results imply for the initial situation can be computed.

The second example is a simplified version of an assembly operation carried out by

Taylor (Albus and Evans (1976) have a series of photographs). It includes the interactions

of four plan islands and is intended to demonstrate realistic interactions which can occur

between steps in a plan. The algebraic expressions are perhaps simpler than might be found

in a more realistic plan. Section 2 introduces the example which is then used throughout

the text to motivate and exemplify the theoretical constructs. It is simplified to bring out

the essential aspects of the plan checking algorithm in such a way that the symbolic algebra

can be followed without the aid of a computer.

2. Section 3 develops a formal model of plans. hi addition it shows how sensing opera-

tions affect the structure of a plan. Section 4 then examines the rorm.4 mathematics of

constraints withiz this framework, and identifies the properties of nutbenaticaJ quantities

associatUd with a plan which can be used to check the validity of the plan, suggest senaing

operations, and propagate constraints forwards and backwards between planning islands.

10

. - . . - . -. - . . ° -. . .. - -A

3. Section 5 instantiates the formal model or a plan checker developed in sections 3 and 4 in

terms of certain computable properties of non-linear algebraic inequalities. An algorithm

exists to compute these properties. The instantiated plan checker is able to carry out

precisely the computations developed in the example of section 2.

Finally section 6 relates this work to previous work on planning, and points out

problems and areas for further development.

..... ..

11

2. Some Examples

Trwo examples of plan checking are given in this section. The first example shows

the essential features of the plan checking algorithm on a realistic single plan island. It

demonstrates the basic idea of propagating desired results backwards through tolerance

and uncertainty computations. The second example uses simplified geometry but shows

four interacting plan islands. Only its structure is introduced in this section, along with a

summary of the results of running an implemented plan checker over it. It demonstrates how

a plan checker can choose the best place to introduce sensing into a sequence of operations,

and how it can resolve plan decisions which may not be intuitively obvious. The example

is considered in more detail in section 5 to illustrate the behavior of an implemented plan

checking algorithm. The appendix shows the complete specification of the four plans as

given to the implemented plan checker.

2.1 A Realistically Complex Example.

This section illustrates a plan checker symbolically analyzing the uncertainties involved

in a simple insertion task. The example is taken from Taylor (1976). It contrasts the

approach of propagating numeric errors with the methods described later in this paper for

symbolic analysis of uncertainties. The computations for this example were carried out by

the ACRONYM model- based vision system, described in in Brooks (1981a) and in more

detail in Brooks (1981b).

Figure 5 is a close up view of a model of the situation described in example 2 of

Appendix E of Taylor (1976).

There is a box with four holes in its top sitting on a table with a given position and

orientation about the vertical axis. The position and orientation are subject to known

uncertainties. A manipulator hand holding a screwdriver, with a srew at the end, is placed

above one of the holes. It has three degrees of position uncertainty, and three degrees of

orientation uncertainty. In addition the screw has two degrees of rotational freedom in its

12

,

Figure 5. A box rests upon a table with an uncertain position and orientation. A
manipulator hand with uncertain position and orientation grasps a screwdriver to which a
screw is attached with two rotational degrees of freedom.

attahiment to the screwdriver. It can wobble backwards and forwards about two orthogonal

axes which go through the center of the end of the screwdriver shaft. If all the uncertainties

in position and orientation arc zero then the tip of the screw should be exactly in the center

of the hole on the box.

Taylor used the following constraints on the errors. The variable names sire mnemonic%

for the errors to which they refer.

-0.3 < BOX-DELTA-POS-X < 0.3

-- 0.2 < BOX-DELTA-PO-Y < 0.2
-50 < BOX-DELTA--ORI < 50

-0.05 < IIAND-DELTA-POS-X < 0.05

-- 0.05 < IIAND-DFLTA-POS-Y < 0.05

- 0 .2 5
° < HAND-WOBBI.E-X < 0.250

- 0 ,2 5 < HAND-WOBBI.E-Y < 0.259

- 0 .250 < HAND-WOBBIE-Z < 0.25
5 < SCREW-WOBBLE-Y < 50

50 < SCREW-WOBBLE-Z 50

13

'I

Taylor assumed a screwdriver of length DRIVER-LENGTH that was exactly 10 inches. A fixed

screw length was also assumed.

Taylor was interested in predicting the uncertainty that could be tolerated in the

location of the tip of the screw relative to the center of the hole. This can be done by

tracing through the coordinate transforms relating the parts of the model to get a symbolic

expression for the coordinates of the screw tip in the coordinate system of the hole. The

coordinate transforms can then be multiplied out symbolically (provided suitable algebraic

simplification can be done - see Brooks (1981a)) to get expressions for the three coordinates.

With zero errors these coordinates would be (0, 0, 0). The ranges of possible values for

the three coordinates indicate the position errors in the placemevit of the screw tip. The

following is the expression so obtained for the error in the y-coordinate.

A - 1.260 - 1.516 X sin(b0X-DELTA-ORI)

1.25 X sin(HAND-WOBBLE-Y) X sin(SCREW-WOBBLE-Z) X sin(- HAND-WOBBLE-X)

X sin(BOX-DELTA-ORI + IIAND-WOBBLE-Z)

- BOX-DELTA-POS-Y X co(BOX-DELTA-ORI)
- HAND-DELTA-POS-X X sin(BOX-DELTA-ORI)

+ 1.25 X cos(HAND-WOBBLE-Y) X cos(SCREW-WOBBLE-Z) X sin(SCREW-NOBBLE-Y)

X sin(BOX-DELTA-ORI + HAND-WOBBLE-Z)

+ 1.25 X cos(SCRE--WOBBLE-Y) X cos(SCREW-WOBBLE-Z)

X cos(-HAD-WOIMLE-X) X sil(HAND-WOBBLE-Y)
X sin(1OX-DELTA-OiI + HAND-WOBBLE-Z)

±1.25 X coS(SCREW-WOBLE-Y) X cos(SCREW-WMOSLE-Z)
X con(BOX-DFLTA-ORl + MWAD-WOBBLE-Z) X sin(-AND-WOBBLE-X)

- 1.25 X cos(-HAD-I WQBBLE-X) X cos(BOX-DELTA-ORI + UAMD-WOBBLE-Z)

X in(SCRE-WOBBLE-Z)

+ 1.260 X com(BOX-DELTA-ORI)

+ BOX-DELTA-PO-X X sin(DOX-DELTA-ORI)

+ DRIVER-LENGTH X cog(--HAND-WOBBLE-X) X iIii(HAND-WOBBLE-Y)

X sin(BOX-DELTA-ORI + I.IAD-WOIBLE-Z)

+ DRIVER-LENGIH X, cohDOX-DELTA-ORI + IIAND-NOBBLE-Z)
x sin(-HAND-WOBDLE-X)

+ IIAND-DELTA-POS-Y X cos(BOX-D LTA-OX)

14

The expressions for Ax and Az are similarly complex.

The symbolic expression bounding algorithms described in Brooks (1981a) were applied

to the three coordinate expressions, given the above error bounds. The results were:

-0.0607 < Ax < 0.0510

-0.590 < Ay < 0.585

-0.660 < Az < 0.654

where +x is the direction down the hole (note that this is a different coordinate system to

that used by Taylor). These bounds compare favorably with those obtained by Taylor:

-0.05 < AX < 0.05

-0.54 < Ay _ 0.54

-0.62 < Az < 0.62

Taylor achieved smaller estimates by using more powerful numerical methods, and by

ignoring some small terms.

However by carrying out the computation symbolically it is possible to answer a much

richer class of questions about the geometry and the constraints. Rather than simply

computing an error estimate based on propagation of errors through the physical system

as above, it is possible instead to start from a desired tolerance and infer constraints on the

initial situation.

Suppose, for instance, that the insertion task illustrated in figure 5 is to be achieved by

applying a downward force, compliant about the screw tip, using either a passive compliance

device (e.g. Drake (1977)) or active dynamic control (e.g. Salisbury (1980)). Then it is

sufficient that the tip of the screw falls somewhere in the top of the open hole. Note that

the hole opening is the size of the head of the screw rather than the size of the screw shaft.

Compliant motion will guide the screw into its correctly seated position. This constraint

can be expressed by

V ()2 + (Az)2 _ 0.25

where the hole opening has radius 0.25 inches. To simplify the algebra slightly so that the

algorithms described in Brooks (1981a) can handle it, and since the errors in the y and

15

z coordinates are essentially independent, it is sufficient in this case to approximate the

above constraint with the following two:

-0.25V. o 5 Ay_ < 0.25NV.5
-o.25oV.5 < Az < 0.25V0 O.

These constraints ensure that the action will succeed. They can be used to check the

plan for the insertion task in any well characterized circumstances.

The following example uses a tighter set of constraints than those used by Taylor on

errors in placement of the box. The box placement errors he used tend to swamp any other

errors. A smaller amount of wobble in the attachement of the screw to the screwdriver is

also assumed. The following bounds on the errors are assumed:

-0.05 < BOX-DELTA-POS-X _ 0.05

-0.05 < BOX-DELTA-POS-Y < 0.05

--0.5
° < BOX-DELTA-ORI < 0.5 °

-0.05 < HAND-IDELTA-POS-X < 0.05 0

-0.05 < HAND-DELTA-POS-Y < 0.05

- 0. 2 5 0 < HAND-WOBBLE-X < 0.250

- 0 .2 50 < HAND-WOBBLE-Y < 0.250

-0.25P < HAND-WOBBL-Z < 0.250

-20 < scREW-woEm.z-Y <

-2
° < SCRW-WOBLE-Z <

It is further presumed that the screwdriver length is not pre-determined i.e. there are

a number of screwdrivers of different lengths available for use. The plan generated must

include selection of one for this task, howpver it is known in advance that

DRIVER-LENGTH > 0.0.

From the bounds on the errors and the expressions for Ax, Ay (suth a above) and Ax

it is possible to deduce bounds on those expressions in terms of the undetermined variable

16

i'

DRIVER-LENGTH. For instance

-0.164 - 0.004420 X DRIVER-LENGTH < Ay K 0.164 - 0.004420 X DRIVER-LENGTH

can be deduced.

The desired constraints on Ay and Az can then be applied to these bounds. Thus

-0.25VW.5 < -0.164 - 0.004420 X DRIVER-LENGTH

0.164 + 0.004420 X DRIVER-LENGTH < 0.250V/'.5

-0.25VIO5 < -0.162 - 0.004204 X DRIVER-LENGTH

0.162 + 0.004204 X DRIVER-LENGTH < 0.250.5

are sufficient to guarantee that the insertion strategy will not fail due to the screwdriver

tip being outside of the boundary of the hole. These inequalities are satisfied whenever

DRIVER-LENGTH < 2.92.

Thus a symbolic analysis of the uncertainties in the positions and orientations of workparts

and the robot manipulator has provided a constraint on the tool to be used to achieve the

desired goal.

2.2 Simplified Coupled Plans.

In this section four coupled planning islands are considered. A plan checker propagates

the effects of actions from one island to the next, checking whether the errors accumulate

to such a degree that planned actions are untenable. When this happens it chooses the

best place in the sequence of steps to introduce a sensing operation. At the same time it

constrains unresolved decisions within the plan framework.

The computations for these examples were carried out by an improved version of

the constraint system described in Brooks (1981a). The new version can handle explcit

disjunctions of constraints (whereas the old version dealt only with conjunctions). Coupling

plans often introduces disjunctions. As a by--product the new version is also able to handle

aquadratic fornis better than the old.
! 17

Consider figure 6. A box has previously been put on a table by a two link manipulator.

The task is for the manipulator to place a lid on top of the box then insert a bolt. The

only source of uncertainty considered is the inaccuracy in the joints of the manipulator. A

visual position sensor is available and is subject to error.

2.2.1 Geometry of the objects and sensors.

The manipulator has two links and two parallel revolute joints. It is thus restricted to

work in a single verlical plane. Each link is 24 inches long.]Each joint can be positioned

to within ±0.10. The plans below only require that it operate at approximately the height

of its first joint, and at a range of 12 to 36 inches from that joint. Using the coordinate

system shown in figure 6 the uncertainty Ax in the x direction of its end-effector when

nominally at coordinates (X, 0) can be bounded by

max(0.0002215x - 0.043262,0.0009857x - 0.063329) < At
nin(0.043262 - 0.0002253x, 0.063329 - 0.0009895x) 2 At (2.2.1)

over x E [12, 361. These bounds are no more than 6% larger than the actual uncertaintities

over that range. Note that the position error is larger for smaller x and smaller for larger

x. The y position error behaves inversely to the x error. L.e. y error is small for small z

and large for large x. However in these plans only the x error is considered.

The box is 2 inches long in the direction parallel to the x-axis. Initially the box sits on

the table with an x coordinate represented by the named physical quantity box.position.

Since the box was placed on the table by the manipulator, the uncertainty in that position

can be characterized by (2.2.1) above. The bolt hole in the box is 0.125 inches in diameter.

The lid of the box is the game size as the box. The hole through it has a 0.125 inch

bore which flares to 0.25 at the top of the lid.

The bot is 0.125 inches in diameter. The tip of the bolt narrows down to 1/32

0,03125 iches diameter at the tip. Once the tip is seated in a hole the manipulator is

compliant enough for the bolt to be inserted without moving the object into which it is

18

It

..:4..

Lid .,

-I I.~r

Box

I I I I
•
° '

IL%'#4 360

Figure 6. A two link manipulator must place a lid on a box then insert a 1/8 inch bolt
(with a 1/32 inch tip) through the lid with a 1/4 inch opening and into a 1/8 inch hole in
the box.

being inserted.

The visual sensor is placed directly above the base of the manipulator with a horizontal

line of sight. It can measure the distance of an object on the table top by the displacement

of its image from the center of the image plane. The senqor is subject to error, and the

larger the distance it must measure, the larger is the error. The implemented plan checker

has been run with a number of different models for the error characteristics for the sensor.

4
The errors are modelled by two functions: 1, and r, dependent on the sensor reading

m. Thus for a true physical value v the sensor will produce a reading m such that

m + 1,(m) 5 v < m + r.(m).

19

4'

An example sensor has -1.(m) = r(m) = 0.0004 X m, and then for physical value v

the sensor is guaranteed to give a reading m where

m + L.(m) = O.996 X m < v < 1.0004 X m = m + h(n). (2.2.2)

2.2.2 A four stage plan.

The plan is broken into four subplans; (A) move the lid to a position above the box,

(13) put down the lid, (C) move the bolt to above the lid and (D) insert the bolt. Note that

the steps to acquire the lid and bolt are ignored in this formulation. This is to simplify the

problem for presentation.

The initial state of the world is determined by the position of the box. It was placed

*by the manipulator at box.position with uncertainty given by (2.2.1).

* The four subplans are given in more detail. rhe full details of how they are presented

to the implemented plan checker are given in the appendix.

Plan A. The lid is moved to a position called lid:position. It has the same nominal value

as box.position. The only requirement is that the nominal position for the lid is within

the workspace of the manipulator, i.e.

12 < lid.positolo < 36.

The resultant position for the lid will be subject to uncertainty characterized by (2.2.1).

Plan B. The lid is released onto the box. For the subplan to work, it must be that the

center of gravity of the lid is above the box. Since the box is 2 inches wide this means that

-1.0 < lid:position - box.osition < 1.0.

Plan C. The bolt is moved to a position called bolt.:position. It has the same nominal

value as lid:posution. As in plan A above the only requirerpent is that

12 < bolt.osition 36.

20

The resultant position for the bolt will be subject to uncertainty characterized by (2.2.1).

Plan D. The bolt is inserted into the lid and through to the box. For the tip of the bolt to

lie wholly within the flared hole in the lid it must be true that

-7/64 = -0.109375 < bolt:position - lid.position < 0.109375 - 7/64.

The bolt will comply with the hole in the lid. The condition necessary for it to be inserted

into the hole in the box is then

-3/64 = -0.046875 < lid.position - box.position < 0.046875 - 3/64.

2,2.3 Analysis of the four plans.

fThese four plans will be used throughout the text to illustrate the plan checking

process. In section 5 a plan checker is demonstrated analysing these four plans and their

interactions. A summary is given here.

The plan checker follows through plan A through to plan D before it encounters a

problem. In plan) the bolt tip can inserted into the lid without the aid of sensing, but

relative uncertainties in the positions of the box and lid have built up so much that there

is no guarantee that they will line up well enough for the bolt to slide though the hole in

the lid, into the hole in the box.

The plan checker identifies the troublesome uncertainties as those for the box and

lid positions but recognizes that the bolt's uncertainty is not an issue. It briefly considers

sensing both the box and lid positions, but without doing any uncertainty analysis it realizes

that such sensing will not change the geometric possibility of misalignment. The check

starts to back up through the plans propagating back the information that the uncertainty

in the box and lid positions seem to be the cause of the problems.

At plan C the checker considers sensing the lid position before choosing a nominal

position for the bolt. It propagates the new uncertainties through to plan 1) but finds again

21

that the fundamental problem has not been changed. The checker resumes the backing up

operation.

At plan B it decides that there is nothing to be sensed which will be any different from

that already tried in plan C. It continues to back up and gets to plan A. It decides that

reducing the uncertainty in box.1pition may suffice. It introduces the use of the visual

sensor for the box position in plan A, then propagates the effects forward through the plans.

Now the nominal values for lid.position and bolt:position depend on the sensed value

for box:position rather than the a priori value.

Assume that a sensor with error characteristics given by equation (2.2,2) is used,

When the checker returns to plan D it finds that the plan will succeed so long as the

initial box position is around either end of the range of 112,361. If the box is placed 4t

the low end of this range then the sensor accuracy in high and even with an inaccurate

manipulator the lid can be placed sufficiently well on the box for the holes tW align. If the

box is placed at the high ned of the range, then the sensor accuracy will be lower, but '0

the extra error so introduced will be compensated for by the increased horizontal position

accuracy of the manipulator in that range. If the box is placed in the middle of the range

then it turns out that the accuracies of both the manipulator and the sensor are sufficiently

bad so that the holes in the box and lid can not be guaranteed to be aligned sufficiently.'

'This result surprised the author. Iv thinking about it qualitatively before running the example
through the plar checker it h&i soeied that the any restrictions on where the box Abould be placed
would be of a form that constrained it to the middle of the range 112,361. The reasoning was that
here neither the sensor nor the manipulator would be sufficiently inaccurate to cause the plan to
fail. However, for that to happen the shape of the sensor error characteristics must be somewhat
different.

22

3. A Model of Plans and Sensors

The basic model of a plan used in this paper is that there is an initial state, a final

state and a plan of action to change the initial state into the final state. There are three

refinements to this basic model. There may be uncertainty in the initial state, there may

be conditions on the applicability of the action, and the planner may generate a plan with

an uncertain final state, All these need to be quantified. Furthermore the plan may be

just a small part of larger plan - a planning island. Decisions concerning certain details

associated with the plan may have to be deferred until adjacent plans in the plan island

space have been finalized. Alternatively, the decisions required for the various islands may

be mutually dependent.

There may be uncertainties in the robot planner's knowledge of the initial state, so

the plan must be able to handle a set of initial states. For instance in the example used in

section 2.1 the set of initial states was all possible combinations of the block's position and

orientation on the table, the hand's position and orientation, and orientation of the screw

on the tip of the screwdriver, subject to the constraints given.

The action may be applicable over a class of states. For instance the screw in the

example of section 2 could be inserted as long as the tip was somewhere within the

circumference of the hole. Given the uncertainties in the initial state of the world, the

robot planner must determine whether the desired action is aplicable.

There may be a range of final states of the world that are acceptable. For instance, if

the task is simply to throw a part in a bin then the particular position and orientation of

the part is not important. It suffices that it is somewhere within the confines of the bin.

Planning islands provide a hierarchical decomposition of large plans into smaller plans

at more detailed levels of abstraction. The model used for a plan in this paper deals with

single islands at a single level of representation. Section 6 discusses linking such plan

islands in the context of constraint satisfaction as introduced here. A sequel to this paper

23

will elaborate on these methods.

3.1 Notation.

To fortmalise the model of a plan it is necessary to introduce some notation. The

notation introduced in this section is sufficient to follow up to section 5 when more will be

necessary.

Individual functions are written as words such as DECIDE or support. Upper case

functions are those for which there exists a program to compute their values. Lower case

functions are mathematical. entities which may not be computable.

Single upper case letters, perhaps with subscripts, such as P or CA refer to sets. Lower

case letters, such as e are used to refer to mathematical individuals. Strings of lette" set in

upper case typewriter font, such as BOX-POSITION-X are formal variables of a plan. Strings

in lower case such as box:length refer to slots in the geometric model of the world. Such

slots represent actual physical quantities. 1

Functions ddned on a domain are sometimes aplied to a subset of that domain,

meaning the image of the subset under the function.

Expressions are constructed from constants, formal variables and slot names. Con-

straints are first order sentences over boolean-valued predicates applied to one or more

expressions. Thus

3.0 + BOX-POSITIDO-X + BOX-POSITION-DELrA-X

is an expression while

-0.03 !5 30X-POSITION-DELTA-X X cos(DOX-DELIA-ORI) _ 0.03

is a constraint.

24

$ A set of constraints is written as a subscripted C, such as CA and C1. The subscript

identifies a particular constraint set. A set of constraints is equivalent to the single con-

straint which is the conjunction of its members.

DEFINITION: The support of an expression is the set of atomic symbols which appear in

it. It is written support(e). Similarly support(c) is written for the union of atomic symbols

which occur in all the expressions in the constraint c, and support(C) for the union of the

supports of all the constraints in the constraint set C. n

For example the support of the expression above is the set

{ BOX-POSITION-X, BOX-POSITION-DELTA-X }.

DEFINITION: The range of a formal variable v is denoted ran ge(v) and is the set of values

that can be substituted for the variable. I

0 1 Typically, the range of a variable will be the real numbers.

DEFINITION: A set of variables V defines a space, denoted space(V), which is the cross

product of the ranges of the elements of V. I.e.

8pace(V) = I range(v)
tiEV

The ordering of the product is arbitrary but fixed for index sets V. m

A point p E space(V) can be written (P., PV2,...,P ,), where the product forming

8pace(V) is ordered v1, v2,..., v,. Given p E space(V) and v E V the vth ordinate of p is

written p,, and of course p, E range(v).

Given two variable sets W and V where W C V, space(W) is identified with the

appropriate natural subspace of space(V).

25

-4

DEFINITION: Given variable sets W and V, where W C V, and a subset S C space(V),

then proj(V,.W, S) is the projection of S into space(W). I.e.
C

proj(V,W,S) {q E apace(W) 13pE S,Vw E W,p , -

As an example a spherical volume in three space projects into a filled circle in two

space - thus

proj(,YZ XYX, Y,,z)I 2 + 2+ z2 1) -- (, y)I x2 +y 2 < .

DEFINITION: Given variable sets W and V where W C V, and a subset R C space(W),

then lift(V, W, R) is the largest subset of space(V) which projects into R. I.e.

lift(V, W, R) p E spmce(V) 3 q E space(W), V w C W,p = . }.

In particular

proj(V, W, lift(V, W, R)) R.1

DEFINITION: Given an expression e aud a variable Ot V where Support(e) C V, and

p E space(V) then Ielv(p) is the interpretation of the expression e at the point p. Its value

is the result or evaluating e with the substitution of p, for v throughoxit for each variable

v C support(e). The definition has a natural exttiision to the interprettiifi of a constraint

c. Thus lcJv is a predicate on the doinsin space(V). Th, defnition can be extended to

* encompass partial evaluation of expfessions. Thus if

V C SUPP&}e = t

then [e)v (p) will be an expression with support in U - V and will be the appropriate partial

evaluation of e, i.e.

'q.E U - V; Ilelv(p)]v -v(q) elu(r)

where r U U such that proJ(U, V, r) p and proj(U, U - V, r) q.

26

For example

IBOX-POSITION-X +BOX- POS ITIDN-DELTA-X] BOX-POSITIOII-DELTA-X }(0)

=BOX-POSITION-X.

DEFINITION: Given a constraint c and a variable set V where support(c) CV, the

satisfying set of c over space(V), written sat(c, V), is the set of all points in space(V) where

the constraint holds. L~e.

sat(c, V) {pE space(V) I[c] v(p)}

For a constraint set C and a variable set V where 8upport(C) V, the satisfying set

of C over space(V), written sat(C, V), is the set of all points in space(V) where all the

constraints in C hold. L~e.

sat.(,)=f sat(c,V).I
cC

Note that for a constraint set C where support(C) CW CV then

sat(C, V) = hf t(V, W, sat(C, W)).

Note also that for two constraint sets, CA and CjS, and variable set V then

8at(CA U C.9, V) =Bat(CA, V) nl at(Ca, V),

where support(CA) C V and support(CS) C V.

3.2 Representing uncertain physical situations.

There are two types of uncertainty which a plan checker must deal with. Plans can be

made quite detailed, yet still incorporate unresolved decisions. Even at execution time the

* robot controller will not have exact values for physical parameters. These are both handled

27

by the use of formal variables to represent uncertain knowledge and constraints on formal

variables what is known.

There are two distinct sorts of variables: those whose values though not known at plan

time will have at least a known nominal value assigned them before execution time, and

those which will not be known even at execution time.

Variables whose values are not known at plan time, but will be known at execution

time are called plan variables.

Variables whose values will not be known even at pla. execution time are called

uncertainty variables.

I

3.2.1 Representing physical values.

Physical quantities are represented in geometric models by names. An ad hoc nam-

ing scheme is used in this paper to avoid the introduction of unnecessary machinery.

Consider plan A in the example of section 2.2. The only physical quantities represented are

box.position and lid.'position. In a more realstic representation of the plan, the named

physical quantities would include. box.idth, lid.width and lid:f eoder-position.

A named physical quantity is represented. as the sum of a plan variable and an un-

certainty variable. Thus for instance in plan A the position of the box on the table,

4 box.position, is represented by the expression

BOX-POS + BDX-UMC

The plan variable BOX-POS whose exact value may be unknown at plan time represents

the nominal value of the position of the box at plan exeeution time. The uncertainty

variable i x-wic repremnts the uncertainty that the robot controller will have concerning

the actual physical position of the box at plan execution time.

28

r4

BOX-tNc This value for BOX-POS can correspond
Sto all the shaded physical situations.

BX-POS

Possible values of BOX-POS for All points on this line segment

a single physical situation. represent the same physical
situation.

Figure 7. A given physical situation can be represented by any point on the sloped line,
and hence its noininal value can take on any value in the projection onto the horizontal
axis. Conversely any nominal value can correspond to any physical situation whose sloped
line intersects the vertical about that nominal point.

A given physical quantity may have many different representations at plan execution

time. Consider figure 7. The uncertainty variable BoX-UNC is bounded above and below

by functions of the plan variable BOX-POS. A particular value for BOX-POS can model many

actual physical situations - one for each value of BOX-UNC which lies within the bounds.

Similarly a given physical situation can be modeled by many values for Box-Pos. Any

particular physical situation corresponds to a straight line segment, with slope -1, as

illustrated in figure 7. Any value for BOX-PUS which lies in the project of the line segment

(the intersection of the line and and the bounded region) onto the axis is a valid nominal

representation of the physical situation.

3.2.2 Nominal values of expressions.

The nominal value of an expression can be recovered by substituting zero uncertainty

throughout. Thus if P is the set of plan variables and U the set of uncertainties, then the

29

nominal value of an expressions e, where support(e) C P U U, will be given by Ieju(Ou)

where Ou is the sero point of space(U).

Thus, for instance the nominal value of BOX-POS + BOX-UNC is BOX-Pos. The functional

form nominal acts on named physical quantities. Thus if box.1ostion is represented as

above, then

nominal(box.-osition) = BOX-POS.

This mathematical device will be useful when it is necessary to extract the nominal value

of a derived expression.

3.3 What is specified and unspecified in a plan.

Plans link an initial state, an action applied to that state and a final state.

At plan time there may be unresolved decisions and so not even the nominal initial

state can be known. At execution time there will be many uncertainties in the actual

values of physical quantities. Thus a plan must consider a set of initial states, ranging over

both unresolved decisions and physical uncertainties. With many possible initial states to

consider there are many possible final states. The action of the plan thus becomes a maping

from initial states to final states.

The role of a plan checker is to ensure that ror all possible initial states the planned

action is applicable and will lead to a final state that can be handled by the next step in

the overall plan.

3.3.1 Initial state.

The insertion task in section 2.1 can be planned in some detail in terms of a nominal

position for the block on the table while still representing it as a variable. Before the plan

is acttial;y executed a specific nominal position will be chosen. (Note that it may be chosen

only momentarily before the plan is executed - perhaps on the basis of a sense operation.)

30

The uncertainty in the two coordinates of the block on the table will not be known even

at plan execution time. Bounds on those uncertainties were, however, known at plan time.

The set of all plan variables in a plan is denoted P.

The set of all uncertainty variables in a plan is denoted U.

The geometry of the initial state of the world is specified in terms or the geometry (in

terms or named physical quantities) of the objects in the world and in terms of expressions

over constants and variables in the set P U U, representing named physical quantities. In

this paper only the correspondences between named physical quantities and expressions

representing them are considered. The details of representation of geometrical relations are

not considered.

A set of initial constraints, C1, where support(Cz) C P U U, constrains the possible

initial states to which the planned action may be applied. Furthermore, sat(Ci, ' U U),

those interpretations of the variables which satisry all the constraints, can be considered as

the set of possible initial states.

The set C! is derived by the-planning system by tracing through the geometry of plan

islands from the given initial state of the world. Its initial derivation is not a concern or

this paper.

As an example consider plan A of section 2.2. There is only one physical quantity to

be represented, namely box.osition. The initial states of the world of plan A can be

represented by the sets
P = {BOX-POS}

U = {BOX-UNC ,

the association

box.*posuitoa BOX-POS + BOX-UNC,

and the set C1 consisting of the constraints

31

12.0 <BOX-POS <36.0

ei(BOX-POS) < Box-uuc < eh(BOX-POS)

where
e(z) = max(O.0002215z - 0.043262, 0.0009857x - 0.063329)

eh(z) = min(O.043262 - 0.0002253x, 0.063329 - 0.0009895z).

For plan D the initial states of the world can be represented by the sets

P = {BoX-Pos}

U = { BOX-UNC, LID-UNC },

the associations
box.position - BOX-POS + BOX-UNC
lid.position - BOX-POS + LID-UNC

and C1 consisting of the constraints

12.0<BOX-POS<36.0

eL(BOX-POS) < LID-Uc< eh(BOX-POS)

eL(WoX-POS) <BOX-UNC_< eh(BOX-POS).

3.3.2 Action.

Associated with an action are certain applicability pre- conditions. The robot planner

generates these conditions as sufficient to ensure that the geometric consequences of the

action will correspond to the modelled consequences. Some or these constraints might be

purely geometric. For example an insertion action requires the existence of a hole. It

is assumed that the robot planner has ensured such prerequisites and can transmit the
4

identity of such geometric features to the plan checker. In addition to the gross geometric

aspects there may be certain finer details which can be conveniently expressed in terms of

parameters. For instance in the insertion task of section 2.1 there was a condition that the

tip of the screw lie within the circumference of the hole. This is an abstract pre-condition

for the applicablity of the insertion action. In the example it was translated in two steps

into conditions on the plan and uncertainty variables. Firstly it. was expressed as

r,,)2 + (Ay)2 < NOLE-RADIUS

32

1

and then as a much more complex expression as the quantities Ax and Ay were related to

quantities representing the state of the world.

The plan checker model or this paper assumes that the robot planner carries out the

geometric interpretation of the abstract action applicability conditions into constraints on

the plan and uncertainty variables. Let that set be CA for applicability constraints. Note

that support(CA) _ P U U.

For plan A the abstract applicability condition is that the lid be moved to some

place in the workspace of the manipulator. Since the lid i6 to moved to physical position

lid:position then the condition can be expressed as

12.0 < nominal(lid.position) _ 36.0

which becomes

12.0 < LID-POS < 36.0

which is the single member of the set CA.

For plan B it is necessary that the center of gravity of the lid be above the extent of

the box. Since the box is two inches wide, and its coordinate system has the origin in the

center of the box', and similarly for the lid, the condition can be expressed as

-1.0 < lid.position - box.posltion < 1.0

which becomes

-1.0 < LID-UNC - BOX-UNC < 1.0

which is the single member of the set CA.

3.3.3 Final state.

The final state of the world is similar to the initial state in that it is represented by

variable sets, associations of expressions and named physical quantities and constraints on

the variables.

33

The action of a plan transforms the initial state into the final state. Sometimes

the action is modeled purely geometrically, as in the insertion example of section 2.1.

Sometimes it will introduce new uncertainties into the world. Plan A moves the lid to a

position with uncertainty determined by the position uncertainty of the manipulator arm.

Let V be the set of introduced uncertainty variables. Members of V model uncer-

tainties, not present in the world before the application of the action, which are a result of

the action itself.

The results of an actiop can not, in general, be modelled precisely. This is the souce of

uncertainty ia the plan checker's model of the world. Thus the action can not be modeled

as a simple function from the set of initial states to the set of final states. Instead the

geometry of the action is captured by a set Cc, where support(Cg) C P U U U V, which

relates the initial state of the world to the introduced uncertainties. Thus the possible final

states of the world are

sat(C] UCg,PUU U V).

If the geometry constraints correspond to a physically realizable action, then for every

initial state where the action is applicable, it should be the case that there is a final state

that satisfies the constraints of the geometry. Thus the geometry constraints C.4 must

satisfy the physical realizability condition

proj(PUUUV,J'UU,sat(C UCAUC.,PUUUV))-Sat(CIUCA,PUU) (R).

As an example the geometric constraint set C4 associated with the action of- plan A

consists of the singleton

el(BOX-POG) < LID-UMIC < eh.(BOX-POS)

where the introduced uncertainty variable set is v = { LID-UIC }. The introduced association

is that

lid.posit,ion= BOX-POS + LID-UUC.

34

I

3.3.4 Summary.

In summary, a plan is specified by its geometry g and by three sets of variables

P plan variables

U initial uncertainties

V introduced uncertainties

subject to three sets of constraints:

C1 initial constraints support(CI) C P U U

CA applicability constraints Support(CA) _ P U U

C9 geometry of action support(C 9)C P U U U V

A plan with geometry g is written as an 7-tuple (g, P, U, V, C1, CA, C4). Note that the

geometry g includes the associations of named physical quantities and algebraic expressions

to represent them.

3.4 Acceptable plans.

The role of a plan checker is to decide whether a plan will work and produce the

desired result. The mathematical criteria for these objectives are easily stated in terms

of the model developed above for plans. They are stated below. There is however some

difficulty in translating these abstract criteria into algorithms. Sections 4 and 5 develop a

general approach and describe a particular algorithm.

3.4.1 The action must be applicable.

The geometric constraints C9 , describing the effect of the action on the initial state of

the world are valid only if the applicability conditions are satisfied. Thus to guarantee that

the final state of the world meets the derived constraints it must be that the applicability

conditions are satisfied for all possible initial states. Thus

sat(C, P U U) sat(C UCA, P U U). (A)

35

3.4.2 The final state must be reasonable.

The plan used for a single planning island must leave the world in a state that is

feasible for the next island in the planning chain. Thus a goal condition can be formulated

for a plan: given any valid initial state a plan should produce a state of the world that is a

vaild initial state for the next plan.

Suppose that the next planning island in the chain has an initial state described by a

set of plan variables P*, a set of uncertainties U* and initial constraints C.

In a simple model of planning one could demand that P = P* and U U V = U*. The

goal condition for a successful plan then becomes

sat(C U C9 ,PUU U V) C sat(Cl,P' UU') = sat(Cl,PU U U V).

In a realistic planning sytem that assumption can not be made. Variables can both be

introduced and removed at various points along the temporal sequence from plan island to

plan island.

Variables, including plan variables, are introduced by sensing operations. Examples

of this are seen below in sections 3.5 and 4.2. This type of variable introduction does not

affect the goal condition statement, as the variables are not used in the description of the

initial state of the plan in which they are introduced.

Variables may be introduced for a second reason. To decrease the complexity of

analysis of plan islands, it might be the case that aspects of the geometry of the initial

state of the world are ignored until the first plan step in which they are relevant. In

this case the introduced variables must be independent of the state or the world described

by the results of the previous actions. The introduction of such variables considt.rably

complicaies the statement of the goal condition, but in reality add little to its meaning,

nor to the implementation of algorithms to check that the coindition is met. Therefore the

36

4

remainder of this paper assumes that all aspects of the world geometry are modeled from

the initial state of the world, and propagated through all actions. In an impleyn'entation of

the algorithms presented later in this paper it is easy to add in this aid to efficiency.

Variables are removed when all named physical quantities with which they are as-

sociated become meaningless. For instance if an object is put down at some temporary loca-

tion, then picked up, the variables which describe its temporary location have no geometric

meaning in the resultant state of the world. Such variables are removed from the descrip-

tions of the world state of all following plan islands. This convention is assumed to aid in

the decoupling of planning islands. It may mean that a sequence of plans, for which a valid

set of plan variables can be chosen, might be rejected due to failure to understand subtle

interactions of uncertainty dependence between plan islands. This paper assumes that the

increased efficiency derived from the decoupling allows extra planning effort, to find better

structured plans in such obscure cases.

It can thus be assumed that P* C P and U* C U U V. The goal condition now

Q. becomes

proj(PUUUV,P* UU* sat(Cz UCgPUU UV)) C sat(C*,P' U U*). (G)

3.4.3 Sound plans.

DEFINIrION: A plan (g,P,U,V,C1,CAX 9) whose following plan has initial state

described by P, U* and C is called sound if both conditions (A) and (G) are true. I
14

The goal of a plan checker is to either certify that a plan is sound or modify it so that

it is sound. A sound plan is illustrated in figure 8.

3.5 What a sensor is.

A sensor is used to measure a quantity in the real world. All sensors are subject to

measurement errors. A plan checker must have a realistic model of a sensor and its error

37

1r

Final States

Initial M1 [] [Initial States

States I(next plan)

States where Prjction of
States where applicable. Final States

applicable. (next plan)

Figure 8. A sound plan has an action which is applicable for all possible initial states, and
which produces a final state expected by the following plan.

characteristics in order to be able to plan the use of a sensor and to realize the consequences

of such use.

3.5.1 Measurable quantities.

A quantity which can be measured must be geometrically represented as an expression

in named physical quantities. In addition a sensor which can carry out the measurement

must be available.

Suppose e is the expression in named physical quantities, and f the result of susbstitut-

ing in e for the representations of the named physical quantitities in a plan

(g, P, U, V, C1, CA, Cp).

Then support(f) C PUU. Expression f can be broken into the sum of a nominal expression

38

- - - - - - - - j

n and and uncertainty expression u by writing

n =[flu(Ou)

u-f - Iflu(Ou).

Thus the uncertainty in f is zero if the uncertainties in all the named physical quantities

in the support of e are also zero. Note that

support(n) C P

support(u) CP U U.

Typical examples of geometrically measurable quantities are the length of an object,

the coordinates of the position of a detectable feature on an object, the orientation of an

object or the area covered by an object on a back lighted table.

For example consider a flat rectangular object whose length, object:length, is repre-

sented as

LENGTH + LENGTH-UNC

and width, object.width, as

WIDTH + WIDTH-UNC

where LENGTH and WIDTH are plan variables, and the others uncertainty variables. Then with

a suitable sensor the length of the object could be measured and in that case

n = LENGTH

u = LENGTH-UNC.

If there is a vision system available which can measure blob areas, then perhaps the area

of the top of the object could be measured. Then

n =LENGTH X WIDTH

u =LENGTH X WIDTH-UNC

+ WIDTH X LENGTH-UNC

+ LENGTH-UNC X WIDTH-UNC.

39

I A
3.5.2 Sensor error is a source of uncertainty.

Any sensor s capable of measuring a geometric quantity modelled by the expression

n + u inherently provides a measurement which is subject to error. Thus it provides a

measurement which is the true value of the quantity in the real world plus some error term.

A sensor s is modelled algebraically by two error expressions, namely I and r. (for

left and right), where

stippcrt(1) - support(rs) = { READING, }.

A modelled sensor a can be read by evaluating READ(s) (recall that uppercase function

names correspond to functions for which there is a piece of computer code somewhere).

This is the nominal value returned by the sensor. If correctly modelled then the actual

physical value v of what is being measured lies somewhere within an error range of this

nominal value. Let

m = READ(s)

then

m + I{READING.)(m) v < M + Ifr,1 READING.)(r).

(Recall that the nAation 1Ls] READING.) is a X-expression which turns i, from an expression

over one variable into a function of one argument.) Thus a sensor can have an error

dependent on the value it measures. This corresponds well to most physical sensors;

especially those that are non-linear. Often, of course tbh, error expressions will be constants.

As an example, consider a sensor a which delivers a reading with ±10% error. Then

- r8 -- 0.1 X RUDI NO,.

Consider figure figure 9. A sensor is being used to read a value for the named physic.al

quantity box.1osition. It is represented as before by the expression

BOX-POs + BOX-tINC.

40

Uncertainty SensorMore accurate

aNominal

iN"

uncertainty

Figure 9. A sensor produces a bound-on possible physical values. The correct nominal
value lies somewhere in the bounded part of the plan variable axis (refer to figure 7). The
shaded region gives the valid representations of the physical situation.

The sensor puts a bound on the actual value of box:position. Recall that a given physical

Q value can be represented by any point on a line with slope ---1 in a diagram such as figure

9. Thus all such lines which go through the bounded region of the horizontal axis comprise

the set of possible realities which are consistent with the sensor reading. It makes no sense

to choose a value for 130X-POS which is outside the bounded region. Thus any representation

of the physical situation which is consistent with the sensor reading should be a point in

the shaded region of the figure. At plan execution time the sensor reading can be used to

constrain the variables BOX-POS and BOX-UNC to define a point in this region.

The sensor error expressions are used in different ways by the plan checker and the

robot controller. The plan checker uses them to generate symbolic bounds on the errors

that will be inherent in noinaal values chosen for plan variables at execution time. The

robot controller uses them to generate numeric bounds on the actual sensor readings so

that it can choose a set of nominal values for the plan variables which are consistent with

all sensor readings and with the state of the world known from previous steps in the plan.

41

4. What A Plan Checker Can Do

Given plans P and P* where

p -(g,P,U, V, Cz,CA,C 9)p" =(g*,,*,U', V', c*l~c;)

and plan P* immediately follows P in the planning island chain, a plan checker could decide

if P was sound by checking whether the conditions (A) and (G) were satisfied.

Such an approach requires the comparison of satisfying sets of different sets of con-

straints. It can be quite difficult to explicitly compute satisfying sets whenever non--linear

constraints are involved, and it is also difficult to compare them. In addition simple failure

to meet one or the conditions (A) or (G) may give no hint as to how to modify the plan so

that it can succeed. In general it is easier for a plan checker to modify a plan to guarantee

that the modified plan is sound, rather than trying to decide whether a given plan is already

sound.

The easiest way to modify a plan is to put extra constraints on the plan variables.

Values must be chosen for those variables before execution time, and the plan checker can

often guarantee that the plan will work by simply constraining those choices. If that fails

it may be necessary to introduce sensing into the plan. Section 4.2 gives an analysis of

the effects of sensing on a plan. Sensing essentially decreases the uncertainty in the world,

so more constraints can be added to the initial state of the world to reflect the increased

knowledge that the robot controller will have at plan execution time. Section 4.3 relates

certain properties of these various sets of additional constraints to the six possible outcomes

for checking a plan given in section 1.2.

4.1 Concurrently checking and rescuing a plan.

Thc method proposed here requires a plan checker to construct an additional set of

constraints C# (the X is for new constraints), where support(C V) C PU U, such that the

42

plan

(g,P,U,A,C, U CM,CA, C9)

is sound.

The performance of a plan checker can be measured in terms of the properties of the set

C which it is able to compute. Some care must be taken in computing C.V to avoid wishful

thinking where the constraints on certain of the variables are physically unrealizable. It

is best to avoid making unforced decisions at any given plan island so a minimal C0 W is

desirable. Below a minimality condition is defined for Cw.

4.1.1 Wishful thinking.

The set Cq can not be chosen arbitrarily. It is easy to construct constraints which

contain hidden wishful thoughts about the initial state of the world.

Unless some specific sensing operation is to be added to the plan, or some previous steps

Q ~of the plan are to be re-planned to meet new initial uncertainty constraints, CV should not

constrain any initial uncertainties for any set of values for the planning variables P which

is valid in both the old plan and the new. I.e. the following condition must be true.

Vp E proj(P U U,P, sat(C; U CwP U (4.1.1)

lift(P U U, P, p) n sat(C1 u CA, P u u) = uift(P u u, P, p) n sat(Ci, P U U)

This condition is easily satisified when support(Cy) C P. In fact there is an equivalent set

of constraints with support contained in P whenever the above condition is satisfied.

Thus a plan checker should first try to compute a set of constraints CM such that the

new plan is sound and support(CN) C P. If it fails to do that, it can try to compute a

set Cj1 where support(CN) g P U U, so long as there exist sensing operations which will

enable the initial state of the world to be determined within the uncertainty requirements

imposed by C A. A prerequisite for this is that the uncertainty requirements be physically

realizable.

43

For instance, considier the measurable quantity box.position from plan A represented

by the expreseios

BOX-Pos + BOX-UNC.

It may be that the constraints Cw imply that for the plan to succeed it must be the case

that

BOX-UNc E [-0.05,0.0751.

The desired sensing operation would be physically realizable with a sensing device having

an accuracy of ±0.05. However it is highly unlikely that

BOX-UNC E [0.125,0.251

could ever be physically realizable. Such a range simply does not make sense as an error

estimate for a sensor.

4.1.2 Minimality of additional constraints.

The new constraints CN narrow down the set of possible initial states since

sat(Cl UCx,PUU) C sat(C,PUU).

A desirable property of the set of new constraints CN is that it remove the minimal

number of allowable initial states of the world at the same time as they ensure that the

plan will work. This is equivalent to arguing for a maximal satisfying set of C I UC . Note

that this is in no sense a condition of the complexity or size of expression of the constraints,

but rather on their effect. It is a desirable property because it allows maximal freedom in

detailed planning concerning the other planning islands in the overall plan. It provides the

least constraint on the rest of the plan.

The performance of plan checkers can be compared more formally as follows. If two

plan checkers fix a plan by responding with the same outcome amongst I through 6 of

section 1.2, but with different sets of additional constraints, CV, and CX, say, then C.A, is

44

smaller (or more preferable) than CWv2 if

sat(Ci U C., P U U) C sat(Cl U C,, P U U).

Note that not all pairs CV, and CV,, are necessarily comparable.

Since outcome 1 is more preferable than outcome 6 (and in general lower numbers are

more preferable than higher) a partial order on responses by a plan checker to a plan has

been defined. This is however only a partial order and so it can not be used to determine

the best response to a given plan. That depends on how the planning island to which the

plan corresponds interacts with all the other planning islands in the overall plan space.

4.2 Planning to use a sensor.

Suppose the plan checker can not find a set Cv with support(C.) C P which ensures

the plan will work. In principle, the plan checker should search for a set such that

support(C1) C P U U and such that there exist sensors which can determine the state

0 - of the world at plan execution time to within the accuracy required by CV. Sensing,

however, introduces new uncertainties and new nominal values. Therefore it is necessary

to restructure the representation of the plan with sensing to reflect the new variable sets.

4.2.1 New variables must be introduced.

Refer to figure 4. The world has an initial state. A sense operation is carried out. The

robot controller interprets the sense operation by choosing some nominal values for plan

variables, and then the plan proceeds as in the simple case of figure 3.

The goal of a sensing operation is to choose new nominal values for named physical

quantities. To fit this with the variable and constraint formalism used here it is necessary

to choose new names for all sensed quantities. Thus for each named physical quantity

which appears in an expression describing a physical quantity to be sensed, a n .W plan and

uncertainty variable pair must be chosen.

45

.. .,p. . _ + _ -

Suppose that in plan A it is decided to sense the physical quantity box:position.

Originally it is represented by the expression

BOX-POs + BOX-UNC.

Let the new plan variable be BOX-SENSE-POS and let the new uncertainty variable be

BOX-SENSE-UNC. The new representation of the physical quantity will be

BOX-SENSE-POS + BOX-SENSE-UNC.

Since both are representations of the same physical quantities the constraint

BOX-POS + BOX-UNC = BOX-SENSE-POS + BOX-SESE-UNC

can be assumed even at plan time. Similar restructuring takes place when the quantity to

be sensed is not a single named physical quantity, but rather derived from an expression

in named physical quantities, such as the area of the top of the box in section 3.5.

4.2.2 Constraints unplied by a sense operation.

Recall from section 3.5 an expression f which is the representation in terms of plan

and uncertainty variables of a physical quantity to be measured, can be decomposed into

the sum of a noninal expression and an uncertainty expression as

.f /=n+..

Similarly let o + v be the expression in the original variables which it is replacing, where

o is the nominal component and v the uncertainty component. Since the old and new

expressions represent the same physical quantity, the constraint

t + U = 0+ IV (4.3.1)

must hold.

A sensor reading at execution time provides a nominal value for the expression n. I.e.

the robot controller can interpret a sensor reading or m by assuming the constraint

m + f(M) ,EIn < m, + .I(RDIN. (m).

46

-,,

All such constraints will be combined (also with constraints already known) and the robot

controller will cboose consistent nominal values for all the plan variables P.

But why not simply use the nominal value returned by the sensor as the nominal value

for expression n at plan execution time? 'rhee is a problem with consistency of multiple

sensor readings. Since each individual sensor has errors in its measurement, if more than

one sensor is used to measure values for non-independent expressions then the nominal

sensor values will usually be inconsistent if used as the nominal values for the expressions.
'I

Given that the robot controller will not use the nominal value returned by sensors

directly, it is not possible to use the sensor error characterization directly to constrain the

a priori runtime uncertainty of using a sensor. The analysis below proceeds as follows. First

the range of possible sensor readings is characterized, then the possible interpretations of

each reading are characterized as in figure 4. From that an a priori uncertainty can be

deduced.

QFirst consider the range of possible sensor readings which might be returned. The

actual physical quantity a priori modelled by o + v must lie in the error range sensed. Thus

m + [IJ{ READING. }(m) :5 0 + _< m ± [rsJ{ READING. }(M). (4.3.2)

Let m be replaced by a new plan variable READING,. At plan execution time an exact

value can be obtained for this plan variable. Recall that I and r, are expressions in

READING5 . Then the above constraint becomes

READING, + 1,-I 0 + V < READING, + r,. (4.3.3)

The nominal value to be chosen for n by the robot controller ensures that

READING. + 1. __ n < READING, + r,

giving READINGs + t, < READING, + rs - u

READINGS + 1, - U < READING, + rO

47

so that
l,- r. _ u r- 1.. (4.3.4)

Recall that 1. and r. are expressions involving READING,.

This last constraint reduces the uncertainty u in terms of READING, which is itself

constrained in terms of the original model by (4.3.3). Together with (4.3.1) this also

constrains the possible range of n.

In the special case that the expressions 1, and r. are independent of the variable

READING, (e.g. for a sensor that has constant error characteristics over its whole range)

there is no need to introduce READING, as a plan variable, and constraints (4.3.1) and (4.3.4)

suffice to constrain the possible values which will be chosen for n, and for characterizing

the uncertainty u.

At first sight (4.3.4) seems to underconstrain the uncertainty u. Recall, however, that

it is the uncertainty at plan time in the derivation of n in terms of o, given that the plan

checker has no knowledge of the algorithm the robot controller will use in determining

a consistent set of nominal values. The implemented plan checker described in section 5

makes better use of the accuracy of available sensors by introducing three complications.

First it assumes that all constraints are "well behaved" in some sense and that the plan

checker can determine at plan. time all discontinuities in the valid values for a plan variable

derived from a sense operation. Secondly it plans sensing operations one at a time, with an

interpretation phase interposed between any two of them. Thirdly it conservatively adds

constraints to C, which ensure that the robot controller can use the nominal value returned

by the sensor as the nominal value for the physical quantity being measured.

4.2.3 The restructured plan.

Let P+ D P include introduced plan variables, and U4 D U include the introduced

uncertainty variables. Also include in P+ any variables READING, associated with sensor s

when either L or r, included it in their supports.

48

The new expressions associated with some of the named physical quantities in the

goemetry g of a plan (g, P, U, V, C1, CA, C9) make it necessary to reconstruct the constraint

sets CA and C9 .Let the new versions be C+ and C .Their supports do not contain any

variables from P and U associated with a named physical quantity which is in an expression

whose value will be sensed. Let g+ be the geometry g, along with the new associations of

expressions and named physical quantities.

Let CS be the set of constraints on the new variables which can be deduced at plan

time. Each sensor contributes either two or three constraints. A sensor with error dependent

on its reading contributes cpnstraints (4.3.1), (4.3.3) and (4.3.4). A sensor with independent

error contributes only (4.3.1) and (4.3.4). Clearly

support(CS) C P+ UU+.
4

The restructured part of the plan which follows sensing can now be written as

I A' P+

where C+ = C1 U CS. Once constructed it can be analyzed and checked by the plan

checker in almost the same manner as the original plan.

The only way in which the resulting plan must be treated differently from any other

plan is that a constructed set of constraints CW may not constrain any introduced plan

variables in the set P+ - P. The implemented plan checker' described in section 5 actually

. keeps track of such variables separately, and constructs sets Cw with support in the original

set P. Any constraints on the introduced variables are thus expressed in terms of constraints

on the original variables. A formal notation for this representation has not been introduced,

in the interests of clarity and brevity.

4.2.4 The robot controller interprets multiple sensores.

4€ At plan execution time the robot controller makes measurements using all the

49

I

prescribed sensors. It then must interpret the values in order to choose a set of nominal

values for varioux physical parameters, which will be used to carry out the planned actions.

The plan checker sets the stage for the execution time sensor interpretation by con-

structing a set of constraints which must be satisfied by the new nominal values to be

chosen for plan variables in P+ - P.

A slight extension of previous notation needs to be introduced. Given a set of con-

straints C, a set of variables A and a point a E space(A), then

ICIA(a)

is the set of constraints C partially evaluated at the point a.

Let M be the set of all formal variables READING8 , one associated with each sensor a

to be used. (Note that M and P+ may have non -empty intersection.) Let CM be a set of

constraints of the form

READING, + 1, < n < READING, + r,.

There is one such constraint for each nominal expressions n being sensed by sensor s.

Now consider the situation at plan execution time. The plan variables in P already

have nominal values assigned to them. Let p E space(P) represent those assignments. The

sensors are all read. The result is a point m E M. (Recall that the error characteristics of

the sensors are encapsulated in the constraints set CS.) The problem then is to determine

a set of nominal values for the variables in P+ - P, consistent with the sensor readings,

the constraints derived at plan time and the nominal values already chosen for variables in

P.

The robot controller can find a set of consistent nominal values for all plan variables,

by choosing a point

p+E space(P+)

50

..

such that

proj(P4 , P, p+) - p

and

p+ E proj(P+ UU,P+, sat([[Cr UCs U Cm)p(p)]M(m),P+ U U+)).

The first of these two requirements simply says that the old nominal values for variables

in P are retained. The second takes into account the sensor readings and chooses an

interpretation of the sensors consistent with the existing constraints.

4.2.5 Sensors can checkpoint plans.

Given that a sense operation has been introduced into a plan it is possible for the robot

controller to check that the sensor readings could possibly correspond to the model of the

world used by the robot planner and the plan checker. It implicitly must do this in order

to interpret the sensor values and choose nominal values for the quantities being measured.

I.e. it implicity checks whether

sat([[CI U CS U CMIP(P) M(m),P- U U+)

contains a point consistent with the values for variables in P, and the sensor readings, when

searching for an interpretation of the sensor values. If such a point does not exist then the

measurements from the sensors are inconsistent with the model of the world.

The plan checker can arrange for the robot controller to do more however. The robot

controller can be told how to to identify which sensor readings are implausible in themselves.

At plan time the plan checker can include in P+ a variable READING, for each sensor

s, independent of whether l and r. depend on that variable, and include a constraint of

the form (4.3.3) in Cs. Then it can compute a set B. where

B. D .oj(P+ U U+, (R.ADING,), sat(Cy U CS,P+ U U+)).

Then at plan execution time when sensor s is read, and a value m. is returned, the plan

can be checked by testing whether m. E B,. If not, then the planned model definitely does

L51

L >..,

not fit the current physical situation. Furthermore the identity of sensor 8 can give any

error recovery system a handle on where the inconsistency lies.

4.3 How additim-,,i constraints afect the plan.

In section 1.2 six possible outcomes for a plan checking algorithm were outlined. That

grouping was somewhat arbitrary but the six outcomes are maintained here to explain how

different properties of a computed set Cv can be used to characterize what can be done

to fix a plan. The mathematical considerations in the characterization of the set C4 are

treated for the six outcomqs below.

It should be emphasized the the particular set CV computed by a plan checker depends
on the plan checker itself. Plan checkers differ in the extent to which they need to alter a

plan to assure themselves that it will work. Such differences can be compared if costs are

ascribed to possible alterations to a plan. The issues involved will not be addressed in this

paper.

4.3.1 What the plan checker does.

The plan checker is given A plan P. It computes a set C4 of additional initial

constraints that it deems necessary to guarantee that the plan is sound. If support(C) _

P then it is finished and the final plan is

(, U, V,c CZU CA .

Otherwise the plan checker introduces sensing into the plan to derive plan P+. It then

computes a new set C+ as before on the basis of P + resulting in a final plan

I

52

4.3.2 Six outcomes.

OUTCOME 1: If no sensing was introduced, support(Cm) C P and (A) and (G) hold then

the new plan is sound and is simply the given plan subject to some extra constraints on

the plan variables. That is to say, some of the as yet unresolved decisions concerning the

plan have been further constrained.

Furthermore, if

CMV=0

or more generally

sat(Cl U Cx,PU U) = sat(C,PU U)

then the orginal plan is the same as the new one, so in fact the original plan was sound.

OUTCOME 2: Suppose sensing has been introduced, (A) and (G) are true for the new plan

and support(C&) C P 4 *. Then the plan with sensing is sound.

OUTCOME 3: Suppose sensing has been introduced, (A)and (G) are true for the new plan,

but support(C+) 7 P+, while support(C+) C P+ U U+. In this case plan P+ should

be rejected and the plan checker should back up to the original plan P augmented with

Cv. Note that support(Cq) L_ P. Now the previous plan islands should be rechecked,

but with C, U CX as a stronger goal constraint than previously supplied. Essentially this

strategy will force sensing to be carried out earlier in the overall plan so that the propagated

uncertainty that reaches this plan island will be reduced.

OUTCOME 4: If any of the above conditions are met, except that (G) does not hold, then

the new plan is physically realizable except that it doesn't achieve the desired goal. The set

of final states which can arise should be propagated forward to the next plawning island,

in the hope that subsequent sensing and actions can be modified to handle the uncertainty

introduced at this step of the plan.

OUTCOME 5: If none of the above conditions could be met (e.g. there are neither powerful

53

enough sense operations available nor could the planning islands before and ahead of this

island be adapted sufficiently) then the plan P is unworkable in the context of the global

plan.

OUTCOME 6: If Sat(ICZ U CAIu(Ou), P) 0 then the plan is unworkable independently of

how much the uncertaintites in the physical system can be reduced by sensing operations.

The test simply asks whether the constraints are satisfiable even with zero uncertainties.

54

5. An Algorithm For Dealing with Position Errors And Toleranced Parts

At the heart of a plan checker there must be a system which can reason about

constraints, about their satisfying sets, and about the projections of those satisfying sets

into subspaces.

The ACRONYM (Brooks (1981a)) system used such a constraint manipulation system

to reason about consistent interpretations of image features. This section takes a constraint

manipulation system of the form used by ACRONYM and constructs an algorithm for

checking the algebraic aspects of robot plans. It is capable of producing five of the

six outcomes previously detailed. In particular it propagates constraints forwards and

backwards amongst planning islands, it introduces sensing operations when necessary and

appropriate, and when a plan is rejected it gives some analysis of what is wrong with the

plan. Extending it to include the sixth possible outcome (outcome 4) is straightforward,

but the extra complexity detracts from the presentation of the algorithm.

V Section 5.1 introduces some more notation concerning satisfying sets of sets of con-

straints.

Section 5.2 details the forrnial properties of the constraint system used in the plan

checker. It is known as the SUP- INF method. These properties are precisely those needed

by the plan checker developed through the rest of section 5. Any other constraint system

with these properties could equally be used as the core of the plan checking algorithm. The

performance of the constraint system (and hence the algorithm) is not formally addressed.

The constraint system used here is understood formally when restricted to linear sets of

constraints. However for non--linear constraints the best characterization known so far is

informal and empirical. Section 4.3 discusses the issue of comparison of performances of

plan checking algorithms.

Section 5.3 introduces an important sub--procedure. It projects a set of constraints

into a subspace, over the satisfying set or a second set of constraints. This procedure is the

55

workhorse for constructing sets Cm.

Section 5.4 describes the main plan checking algorithm based on the SUP-INF method.

Section 5.5 details how the SUP- INIP method can be used to decide which physical quantities

need to be sensed, and section 5.6 gives a detailed example of the plan checker on the four

coupled plans introduced in section 2.2.

5.1 More notation.

The constraint methods used at the core of the plan checking algorithm described in

the following sections rely 6n estimating bounds on expressions over satisfying sets of sets of

constraints. Some additional notation is convenient in order to characterize their behavior.

DEFINITION: Given an expression e, and a set of constraints C, let W " support(e) U

support(C), let S sat(C, W) then define

lub(e, C) - sup[ejw(p)
PES

and

90b(e, C) = inf [ci w(p).

Thus lub(e, C) is the least upper bound on the values achieved by the expression c over the

satisfying set of the constraints C. The greatest lower bound glb(e, C) is defined sinilary.

5.2 The computational tools.

Blcdsoe (1975) introduced what be called the SUP-INF method, to determine whether

sets or linear equalities had integer solutions. The problems he wished to solve arise in

automatic generation of proofs of correctness of programs using methods of inductive

assertions. Shostak (1077) extended the method and showed that it was equivalent to the

simplex method over real linear inequalities.

This author (Brooks (1981a), (19811))) extended the SUP-INF method to handle a

56

large class of non -linear inequalities, and included simple extensions to handle certain

elementary functions (e.g. sin and cos) in a primitive way. To support an implementation of

a complete plan checker, the author had to extend the method further to handle disjunctions

of both inequalitities and conjunctions of inequalities. It already implicitly handled simple

conjunctions of inequalities. As a by--product of this development it became possible to

include a much fuller treatment of quadratic forms.

This section describes the computable functions of the extended SUP-INF method,

and characterizes their capabilities. The precise algorithms used in the earlier versions of

SUP -INF method can be found in Brooks (1981a) and Brooks (1981b).

Expressions handled by the extended SUP-INF method can include operations for

addition, subtraction, multiplication, division, square root, maximum, minimum, and (to

a limited extent) some trigonometric functions. Operations are on numbers, the special

symbols co and -co and formal variables.

Constraints are inequalities and conjunctions and disjunctions of constraints.

Disjunctions can arise from simple inequalities if MIN is placed on the left of "<" or MAX

on the right.

5.2.1 Bounding with projections.

The SUP-INF method takes its name from two procedures, SUP and INF which bound

expressions over satisfying sets of constraint sets. In general they do not provide the best

possible bounds, but in many cases (linear for instance, see below, but also often otherwise)

they do.

Typically the symbolic result of SUP will be an expression of the form min(el,..., e.,)

while the result of INF will be of the form max(e1,...,e,).

Consider as an example the set of constraints defined by

57

cE = {x x < y,x+y_< 7}.

Then the procedures SUP and INF produce the results:

SUP("z + y", Cc, { y }) - rain(7, 2.1926 + y, y -+- V)

and

INF("x", Ce, 0) = -3.1926

The two procedures take three arguments. First consider the following special case.

Let e be an expression, C a set of constraints, and suppose that support(e) C support(C).

Then Brooks (1981a) shows that

lub(e, C) SUP(e, C, 0)

and

glb(e,C) INF(e,C,0)

whenever C is satisfiable, i.e. whenever

sat(C,support(C)) $ 0.

No guarantee is made concerning the results returned by SUP and JNF when the constraints

are not satisfiable.

For linear sets of constraints the extended versions of SUP and INF behave identically

to those of Shoptak (1977). lie showed that under those conditions they actually find

the best possible bounds. That is for a constraint set C which consists entirely of linear

constraints, and a linear expression e then

ltsb(e, C) - SUP(e, C,0)

and

* glb(e, C) = INF(e, C, 0).

58

SUP(e, C, { y)

Bounds E(y(S2(,Xy

Figure 10. An illustration of the projection and bounding behavior of the procedures SUP
and INF. rhe text contains detailed commentary.

Procedures SUP and lNF are more general however. Given a satisfiable set of con-

straints, an expression over the satisfying set, and a subspace, SUP and INF compute sur-

facer, defined over the projection into the subspace of the satisfying set, which everywhere

bound the expression over the inverse image of the projected points in the original satisfying

set. More formally, but perhaps more clearly, suppose support(C) W, V C W4, and e is

an expression where support(e) C W. If

sat(C, W) 30

then

support(SUP(e, C, V)) C V

SuppOrt(INF(e, C, V)) C V

and

V X E sat(C, W),(.2)

ISUP(e, C, V)Jv (proj(W, V, x)) [elw(z) 2 [INF(c, C, V)lv(proj(W,V, z)).

Figure 10 gives an illustration of these capabilites. There the set W is defined by

W = { z, y }, and V - { y}. The constraint set C is satisfied by the region shaded in

the x-y plane. The expression e takes values in the reals 9? over the satisfying set and

gives rise to the surface patch illustrated. The darkened region of the y-axis illustrates the

projection of the satisfying set sat(C, W) into space(V). The shaded region in the y -R plane

is the corresponding projection of the values achieved by e. The curves in the y -R plane

above and below that shaded region correspond to the values achieved by the expressions

returned by SUP(e, C, V) and INF(e, C, V), both expressions in y, over the porjection of

the satisfying set. Notice that they are upper and lower bounds on the projection of the

surface patch generated by e.

5.2.2 A partial decision procedure.

The procedures SUP and INF can be combined (following Bledsoe (1975)) to produce

a partial decision procedure on sets of constraints. The decision concerns whether a set C

of constraints is consistent, i.e. whether the constraints are satisfiable, or formally whether

b

.9at(C, support(C)) & 0.

That the procedure is partial comes from the fact that it can not always decide whether

or not this is the case. In fact it has two outcomes; one that the satisfying set is definitely

empty, and the other that it doesn't know. This property is the cost of requiring that

it always terminate in some bounded time determined by the size and complexity of the

constraint set C.

The decision procedure is called DECIDE. Given a set of constraints C, then if

V v E support(C), INF(v, C, 0) < SUP(v, C, 0)

(where the definition of "<" is extended to handle ±oo correctly) D)EC1DE(C) returns

"possibly satisfiable" (or true), else it returns "definitely unsatisfliable" (or false).

The procedure)ECIDE is sound in the sense that it never returns an incorrect result.

60

This follows from the fact that SUP and INF return upper and lower bounds over the

satisfying set of a set of constraints.

Of course a procedure which always returns "possibly satisfiable" is also sound under

this definition of soundness. Such a procedure happens to be worthless, however. A partial

decision procedure is only interesting is it sometimes detects unsatisfiable sets of constraints.

The more often it successfully detects such sets, the more interesting it is.

The only characterization of the extended SUP -INF decision procedure is empirical.

In practice, in its use in the ACRONYM system there was never a case observed where

it failed to detect an inconsistent set of constraints. However it is possible to construct

a set of constraints which is in fact inconsistent, on which DECIDE returns "possibly

satisfiable". The philosphy adopted in ACRONYM was that if there was a failure to detect

an inconsistency at some point in the computation, it would more than likely be detected

later as the implications of the inconsistency were propagated and became less subtle.

5.3 A critical sub-procedure.

Besides DECIDE, another important sub-procedure used in the plan checker is

PROJCS. It projects a set of constraints into a subspace over the satisfying set of a second

set of constraints in such a way that points which satisfy the projected constraints also

satisfy the original constraints. Essentially it tries to find prismatic subsets of the satisfy-

ing set of the first set of constraints, with elongation orthogonal to the projection subspace,

which are wholly contained in the satisfying set of the second set of constraints.

Given variables sett W and V where V C W and constraint sets Ci and C2 where

8upport(Cl) C W and support(C2) C W, the procedure PROJCS simply computes the

projection of C, from space(W) to space(V), over the satisfying set of C2 , by

PRO.JCS(W, V, Ci, C2)

- "SUP(a, C2, V) < INF(b, C2 , V)" I "a < b" E Ci, SUJ(a, C2, 0) INF(b, C2,) }.
If a constraint contains conjunctions or disjunctions tien PROJCS simply maps this projec-

tion over the terms. Thus PROJOS is a computable procedure which returns a set of

61

'9

constrainti. The set V supports those constraints. The comparison of the numeric tipper

and lower bounds of a and b respectively simply serves to prune out constraints which are

trivially true over the satisfying set of C2. The key property of procedure PROJCS is given

by the following lemma.

LEMMA: Let C = PROJCS(W, V, CI,C 2). Then

sat(C UC 2,W) C sat(Cl,W).

PROOF: Let z E sat(C U C2, W), and let a < b where a and b are expressions in W be a

constraint in C1 which is not trivially satisfied over sat(C2, W).

Since z E sst(C2, W), then by the definition of function SUP (see (5.2.1))

Ialw(x) _< ISUP(a,C2, V)Jv(proj(WV,z))

and

(INF(b, C2 , V)Jv(poj(W, V,X)) < (blw().

But x E sat(C, W) also and hence satisfies every constraint in C. In particular C includes

the constraint

SUP(a, C2, V) :_ INF(b, C2, V)

and hence

(alw(z) [blw(x)-

Thus x E aat(CI,W).i

The procedure PROJCS often results in a set of constraints whose satisfying set is

expressed as a disjunction of sets satisfying subsets of the constraints. This is because

it construct inequalities by puttiiig expressions produced by INF, which includes "max"

expressions, on the right of "<" symbols, and expressions produced by SUP, which include

"rain" expressions, are put on the left.

62

5.4 Checking a plan,

The plan checker must check a sequence of subplans at a particular level of abstraction.

A procedure CHECK is defined later in this section which checks individual subplans, or

plan steps. It must be used by a higher level plan checker which typically would be part

of the actual robot planner. In this paper we assume a simple model for the plan checking

aspect of the robot planner.

First it is given an initial state of the world and it propagates the effects of actions on

the world, using CHECK, through the plan steps while constraining the plan variables so

that all actions are guaranteed to succeed. Whenever a plan step is reached which can not

be guaranteed to work by constraining plan variables or sensing at that step of the plan,

the robot planner backs up, again using CHECK, carrying back a set of goal constraints

to a point where CIhECK can guarantee that the goal can be satisfied. It then proceeds

forward again from that subplan aplying CHECK and propagating the results.

This process is illustrated below by checking the four plans A through B introduced

in section 2.2.

Clearly there is room for much work on the role of the robot planner and the nego-

tiations which can take place between adjacent planning islands. This paper has not directly

addressed that issue, as it is more properly part of the planning process itself, rather than

part of plan checking per se. What this paper has done is to give a mathematical framework

4 within which those negotiations can be explored.

5.4.1 Simple checking.

Figure J I defines the procedure CHECKSIMP. It is the part of the plan checker which

tests whether a plan can be guaranteed to work simply by constraining the plan variables.

4 In its argument list P is the plan to be checked and P" the plan which follows it in the

63

I,

fr"

procedure CIIECKSIMP(P, P*, FEEDFWD)

begin
it not DECIDE(ICz U C]u(0r))

then outcome 6

else
begin

CA- PRCJCS(PU U,P, CA,CZ)
U (if FEEDFWD

then 0
else PROJCS(P U U U V,P,CI,C1 U Cg));

if DECIDE(C UCx)
then

begin
if FEEDFWD then PROPAGATE(P CI U C.4 U C9);
return outcome I

end
else return other

end
eid;

Figure 11. Procedure to check whether a plan will work if its plan variskles are sufficiently
constrained.

chain of planning islands. A flag, FEEFDFD, says whether the initial states of the following

plan P* should be used as a goal condition (when the flag is false) or whether the initial

states of the following plan should be derived ? oni the current plan (when the flag is true).

In that case a procedure PROPA(ATE is called to update P. Details of that procedure are

not considered here.

THEOREM: If procedure CHECKS/MP produces outcome 1" then the plan

(g,P, U, V, CI U; C, CA, C,)

is sound.

PROOF: It suffices to show that conditions (A) and (G) hold.

Since Cv was computed by procedure PROJCS the lemma of mction 5.3 says that

eat(Cz I Cjv, P U U) _ 8at(CA, P U U)

64

V

sat(C1 , P U U*) sat(CI g UUUV

P

sat(C;' U CA, P U U)

sat(zPU) ~ (2~Constraints CV

Figure 12. An illustration of the various constraint sets and their satisfying sets involved in
finding sufficient constraints oii plan variables tc guarantee that a plan will succeed. The
text contains detailed commentary.

whence condition (A) is proved.

if FEEDFWD was true then the theorem is proved. Otherwise the lemma can again be

used to establish that

Sat(C U C9 U CM, PU U V) S at(C,PU U UV).

B~ut P C P and U C U U V whence condition (G) is satisfied.

65

L

5.4.2 A more intuitive explanation.

This section tries to give a more intuitive explanation of what is going on in construct-

ing the constraints Cv above. Consider figure 12.

For simplicity (and drawabilty!) the sets 1J, U and V have been compressed to single

variables. In addition the axes have been offset so that they don't go through the zero values

of variables in U and V. The large region outlined in the P-U plane is sat(Cz, P U U)

the set of initial states possible for the original plan. The region in the P-V plane is

sat(C-1,P U U-). Note that in this case P = P* and V = U*. The smaller region in the

P-U plane is the region where the action of plan P is applicable - i.e. sat,(k31 U CA,PU U).

The surface floating above is the set of states which the action can achieve when applied

to an initial state. In this diagram there is only one resultant state per initial state, so that

it could be represented by a function. The surface patch is given by sat(C1 UCg, PUUUV).

The role of procedure CIIECKSIMP is to further restrtict the set of initial states to

where the action is applicable and to where the resultant final state will project into the

set of initial states of the following subplan P*.

To avoid wishful thinking (see section 4.2) the cross section of the new set of initial

states must be identical in the U direction wherever it intersects the original set. This is

because one cannot change the initial uncertainties purely by legislation - sensing must

be introduced if that is desired. Therefore the only constraints allowed in this diagram are

ones oin P, and so they must be parallel to the U-axis.

Condition (A) says that the initial states should be confined to be a subset of the points

which satisfy CA. Condition (G) says that the initial states should be confined so that the

patch of final states above them projects into the initial set of the following subplan, in

the P-V plane in this case. The dashed lines give constraints CN which guarantee that

conditions (A) and (G) are satisfied.

66

procedure CI[ECK(P, P', FEEDFWD)

begin
case CIIECKSIMP(P, P*, FEEDFWD)of

1: return outcome 1;

6: return outcome 6;
other: begin

CM - CA U (if FEEDFID

then
else PROJCS(P U UV,PU U,CC U C));

s +- SENSEVARS(C 1, C x, P, U);
P- + - REsrIIUCTURE(P,s);
case CIHECKSIMP(P + , P+*, .true.) of

1: return outcome 2;

6: return outcome 6;
other:'if PROPI3ACK(P, C)

then return outcome $

else return outcome 5;

endcase

end;

endcase

end;

Figure 13. rhe main plan checking algorithm.

5.4.3 Full scale checking.

Figure 13 gives the main plan checking algorithm. It uses CJIECKSIMP to check the

original plan and simply passes on the result if the plan either fails to work completely or

if it can be guaranteed to work by simply constraining plan variables. Otherwise CHECK

attempts to introduce sensing into the plan to see if that will help.

It constructs a new set CN, using PROJCS as does CHECK, but this time its support

can include uncertainty variables from U. It calls a procedure SENSEVARS described in

section 5.5 below to decide which of the uncertainty variables need to be reduced by sensing

to meet the new constraints CV. SENSEVARS returns a set of physical quantities to be

measured, and associated sensors to do the measurement.

The procedure RESTRUCTURE is invoked to carry out the operations described in

67

section 4.2 to restructure the plan P by introducing new plan variables whose values will be

instantiated at plan execution time by interpreting the chosen sensors. (Section 5.5 below

shows some practical simplifications which can be made to the constraints of section 4.2.

The simplifications are not approximations, but rather conservative estimates which result

in much simpler constraint sets and thus less computation time. Their drawback is that in

very tight situations the plan checker may reject a plan which is actually valid.)

Now procedure CHECK invokes CIIECKSIMP again to check the restructured plan.

The FEEDFWD flag is passed true, so that subsequent planning islands will be restructured for

the new sensing variables. If CI[ECKSINP says that therestructured plan P+ is sound

then CHECK is done and by the theorem above the plan with sensing is sound. Otherwise

the procedure PROPBACK is invoked. It recursivley re-invokes the plan checker on the

previous (and already checked) plan, with FEEDFWD false, to see if it is possible to deliver

the world to plan P in a state where the uncertainties meet the constraints CAI. Of course

the result of CHECK on the previous plan may again result in PROPIBACK being invoked,

and further recrusive calls of CHIECK back through the chain of plans. If that recursion

finally fails the PROPBACK returns false and procedure CICK gives up by signalling

outcome 5. If PROPIIACK is successful then Cv defines a new plan which is again sound

and outcome 3 is the result. Examples of the behavior of IPROBACK are given in section

5.6 below.

5.4.4 An example.

The function CITECK is called on each of plan A through plan D succesively, with

FEEDFWD true, so that the initial constraints of the following plans are generated. Section

3.3 showed the initial states for plan 13 which had been generated from plan A. In that case

the call to PROJCS in CIlECKSIMW produces no new constraints, as the constraint from

C1, namely

12.0 < BOX-POS < 36.0

is trivially satisified.

68

Plan B generates no new state information. Finally plan C generates initial constraints

of
12.0< BOX-POS <36.0

es,(Box-Pos): BOX-UNC <eh(BOX-POS)

e,(BOX-POS)_< LID-UNC _ eh(BOX-POS)

e ,(BOX-POS)_ BOLT-UNC< eh(BOX-POS)

where
ej(x) = inax(0.0002215x - 0.043262, 0.0009857x - 0.063329)

eh(x) = nin(0.043262 - 0.0002253z, 0.063329 - 0.0009895x)

for plan D. Again PROJCS generated no new constraints in this case. Note that

P = BOX-POS }

U = { BOX-UNC, LID-UNC, BOLT-UNC }.

When CHECK is applied to plan D the first call to CHECKSIMP fails with outcome

"other". The reason, although the plan checker can not isolate it to this level of analysis,

is that all the bolt and the lid line up well enough for initial insertion, there is too much

uncertainty in the relative positions of the box and lid to guarantee that the holes in

them line up. A new set Cq is computed where support(Cv) C P U U. The procedure

SENSEVARS is invoked and it deduces that BOX-UNC and LID-UNC have smaller ranges of

values when CV constrains the intital states (SENSEVARS is described in more detail in

the next section). It correctly deduces that there is no need to reduce BOLT-UNC anywhere

in the range of box positions.

The plan is restructured to introduce sensing. However the procedure

RESTRUCTURE notes that no named physical quantities are introduced in plan D, so

sensing can not affect any action which is to take place. Therefore it immediately invokes

the procedure PROPBACK. It propagates the set C1 U C.V back to plan C as the initial

constraints of plan D. Thus when CJLECKSIMP is invoked on plan C with flag FEEDFWD set

to false, it is realized that plan C needs to produce a more tightly constrained world state

than before. Again SENSEVARS is invoked and it recommends reductions in the ranges of

BOX-UNC and LID-UNC.

Procedure RESTRUCTURE is once again invoked. It decides that since there is only

69

1!

one new physical quantity to be introduced, namely bolt:position, and since it depends

only on lid:position, then it can only possibly help to sense the latter, and thus it can only

(possibly help to reduce the uncertainty in the position of the lid and not in the position of

the box. Sensing is introduced, and then PItOPBACK propagates forward from the new

plan C to plan D once again. However plan D once again fails as the relative positions of the

box and lid have still not changed, and so there is no guarantee that they will line up well

enough for the bolt to be inserted through them both. Therefore PROPBACK continues

to back up from plan C. The result is described below in section 5.6.

5.5 Introducing sensing.

Section 5.4 described procedures to check plans. A major subprocedure invoked by

CIIECK was SENSEVAHS. Its job is to select physical quantities and sensors to be intro-I
duced into a plan to guarantee its success. There are two stages to that process. First

the uncertainties which must be reduced by sensing need to be identified. These can be

determined by examing the set of new constraints Cx. The prcoess is described below.

The second step is to choose sensors which will indeed reduce those uncertainties.

5.5.1 Deciding what needs to be sensed.

Refer to figure 14. The outlined area in the P-U plan is the original set sat(Cz, PUU).

The shaded subset of that area corresponds to sat(Cl UC.4, PUU). For a given value of the

single plan variable in P a piece of the original set which is uiishaded represents a tightening

of constraints on the single uncertainty variable in U. In general it will be necessary to

identify which uncertainty variables are so constrained.

Consider an uncertainty variable u E U and the problem of deciding if it has been

further constrained. Let

os = SUP(u, c,P u U - {u})
0, = INF(u, C,PUU U -{ u)

n, = SUP(UC U CM,PUU - {u})
n, = INF(u, C1 U Cv,P UU - {u}).

LO.

Expressions o, and o, are the original bounds on u, (expressed as functions of the parts of

space orthogonal to u) and n, and n, are bounds on the newly constrained u.

If u is indeed constrained by the set CA, then there exists some point

x E apace(P U U - { u)

at which one of

[n1PUu-,,)(X) < 1o-1peu- .-)(z) (5.5.1)
'p,lPuu-,,)(x) > [o,ipuu- ,,)({) (5.5.2)

is true. In the remainder of this analysis only o, and n. will be considered. Dual statements

hold for n, and o,.

To determine whether condition (5.5.1) were ever true it would suffice to examine

o. - n, and see if it were ever positive. However o. and n, will typically be expressions

involving "min" and thus their difference will be too complex for the SUP-INF method.

0-4
Suppose however that n. min(ns8 ,ns 2 ,...,nsk). Then if for any c > 0 one of the

sets

C = Cj U{u> n.,+ }

is satisfiable then condition (5.5.1) is satisifed.

Therefore the algorithm SENSEVARS simply chooses some small c and for each u

applies procedure DECIDE to each set of the form C above. If at least one of the sets

is shown to be possibly satisifiable then u us a candidate for reduction. Note that if for

some u all sets are said to unsatisfiable by DECIDE then (since DECIDE only says sets

are unsatisifiable when indeed they are unsatisfiable) u has nowhere been reduced by more

r than e over space(P U U - { u)).

In the example of sections 5.4.4 and 5.6 a constant of 0.000001 was used.

71

.--.---- "---.-...-"i~

5.5.2 Choosing a sensor.

Once the uncertainties are to be reduced by sensing have been chosen, it is necessary

to carry out some geometric reasoning to find which quantities can be measured in order

to reduce those particular uncertainties. Each uncertainty is associated with a particular

named physical quantity in the geometry g of the plan. A quantity which can be sensed and

which depends on that named physical quantity must be found. That topic is not covered

in this paper.

Once a candidate sensor has been found it would be advantageous to determine im-

mediately its measurement error is small enough to provide the desired reduction in uncer-

tainty. If more that one candidate sensor is found then this capability would be even more

desirable. The'8UP-INF method proves useful in this task also, but more work remains to

be done on the topic and meanwhile a useable plan checker can be implemented based on

the SUP-INF method without this capability.

5.5.3 Deriving the constraints.

Section 4A4.2 defined the constraints which can be inferred! from adding a sense opera-

tion into a plan. Those constraints contain many variables and an equality. Such constraints

slow down the SUP-INFmethod significantly, making, he analysis Qf a sensing operation

expensive. It turns out however that a set of simpler constraints, essentially projections of

the exact forms, iato a. subspace, are almost as strong as the originals. Thus it is possible

to trade time spent in plan analysis for the possibility of missing a correct plan when all

constraints are extremely tight. This, exactly what the plan checker implemented by the

author does.

In addition the implemented plan checker assumes that the robot controller will use

the nominal value returned by a sensor as the new ilominal value for the physical quantity

being sL.Aed. The validity of such sensor interpretations depends on the ability at plan

checking time to be able to split up a satisfying set of C, into components where the

72

physical quantity ranges over a single interval.

Recall the notation used. A physical quantity represented by the expression o + v,

where o has support in P and v has support in U, is to be sensed and to be represented

by the expression n + u where n represents the nominal value and u the uncertainty. The

implemented plan checker introduces the following three constraints.

n + L,(n)_ o + SUP(v, C,, support(o))

o + INF(v, C1 , support(o)) <_n + r.(n)

< r(n)

The first two are an expression of constraint (4.3.1) projected into a subspace of plan

variables. The projection is conservative in the sense that anything that satisifies these two

constraints will also satisfy (4.3.1). Thus the plan checker will have more situations to deal

with than might have been described by using the more exact constraint. Since no explicit

sense variable is introduced, but n is used directly instead, these two constraints also express

the relation given by constraint (4.3.3). The final constraint concerns the uncertainty in

the sensed quantity, and it takes the place of constraint (4.3.4).

Notice that the first two introduced constraints allow n, the new nominal value, to

have a larger range of values than o, the older. Practically this often means that some

constraint, newly expressed in terms of n, will cut down the allowed range of values for

o so that n ends up having the same range as did o before the sensing constraints were

introduced. It is this process which validates the use of the nominal sensor reading as the

nominal value for the quantity being measured.

5.6 Completing the example.

Consider again the example of the four coupled plans.

After rejecting the introduction of sensing at the start of plan C the procedure

73

'-"

PROPBACK works back through plan B and plan A. At plan B it notices that no new

physical quantities are introduced, so sensing can not help. The extra constraints request-

ing a reduction in the uncertainty of the box and lid positions are carried back to plan

A.

Procedure SENSEVARS suggests that the box position should be sensed. Since

an introduced physical quantity lid.position depends on box:position the procedure

RESTRUCTURE introduces sensing for that quantity.

Now the new constraints are propagated through the-series of plans using procedure

CHlECKSIMP. Extra constraints get added to the new plan A to ensure that the nominal

value of the sensor can be used as the nominal value of box.position. For instance when

the sensor has error characteristics

-1.(m) = r.(m) = 0.0004 X m

then the constraint

12.0454 < BOX-Fos < 35.9579

is added. No extra constraints CM are needed until plan D is reached. The final subplan

places extra constraints on the plan variables (the initial nominal position of the box,

BOX-POS is the only plan variable), depending on the error characteristics of the sensor. The

following table summarises some results.

Function 1. Function r. Resulting CM
-0.00035 x X 0.00035 X z empty

-0.00010 X X 0.00040 X x BOX-POS < 20.0892 V 28.1397 _< BOX-POS
-0.00045 X X .00045 X z BOX-POS < 15.6811V30.7618 < BOX-POS
-0.00050 X X 0.00050 X z BOX-POs < 12.8564 V 33.9237 _< Box-PO
-0.00055 X z 0.00055 X x unsatisfiable

T he sensors, with linear error, smoothly degrade the range of initial box positions which

lead to final success of plan D. With an error factor of 0.00035 the plan can be successfully

74

carried out wherever the box is initially placed. For 0.00040, 0.00045 and 0.00050 the

central region of the working area of the manipulator is forbidden, as the combination

of sensor error and manipulator uncertainty makes the plan infeasible. If the only sensor

available has an error factor of 0.00055 then nowhere is sensing powerful enough.

In the latter case when the plans are propagated forward from plan A with sens-

ing through to plan D, the plan checker finds that the set Ck computed by procedure

CIIECKSIMP leads to no feasible initial positions for the box. There is nowhere left to

propagate backwards from plan A so it must conclude that in this case the sequence of

plans is infeasible due to inadequate sensing.

75

I!

6. Related Questions

This paper has developed a formal model for checking robot plans. To do so it first

developed a formal model of plans. Plans are the result of planning. The plan checker is

able to modify plans, but there has been no development in this paper of the formal process

of planning. Thus there are some deficiencies in the model of plans used. Work is needed

to integrate the model presented here with more creative planning processes.

6.1 Planning.

Most work on planning has been restricted to abstract domains where there is little

notion of a metric, let alone spatial relations, errors or tolerances.

Sussman's (1075) HACKER program works entirely in an abstract blocks world.

Sacerdoti's (1977) NOAH is not restricted to the blocks world, but every problem descrip-

tion requires a procedural semantics of the domain to accompany it. The user really needs

to know the solution in advance in order to decide the form of the semantic description.

Stefik's (1981) MOLGEN works in a domain of planning molecular genetics experiments,

but it doesn't even have a strong notion of quantity. All these programs concentrate on

planning, but in a domain with iinpoverished semantics. The semantics of their worlds can

be completely specified in a few lines. They plan within that very simple world. Many

of their ideas are useful for robot planning, but one should not suppose that any of these

programs are capable of producing plans that could possibly work in a real world.

The ABSTJRIpS sytstem (Sacerdoti (1974)) is often cited as a real world robot plan-

ning system. Indeed, a physical robot, SHAKEY, Was controlled by plans generated by

A3STRIPS. However, SHAKEY was restricted to a tightly controlled environment, and

much careful engineering ensured that the world was relatively benign. Errors that the real

world introduced were handled by having the complete planing system available at execu-

tion tiue (in PLANEX) to modify the pro-computed plans. As such, this is an excellent
idea, where runtime processing power makes it viable, to handle deviations in the modelled

76

.1........................

world from that encountered in the real world. It has the disadvantage of the execution

time strategy turning into somewhat of a "hit-and-miss" affair, where the models are not

completely adequate, so a cycle of "action, sense, new action to achieve the same goal",

can often develop.

Fahlman's (t973) BUILD system, incorporated three dimensional models of objects

from the blocks world. Uncertainties of size and position ((1973) p. 48) were ignored as an

extra complication to be tackled later. Fahlman did however deal with objects touching,

gravity and frictional forces. BUILD is capable of impressive behavior in the face of complex

arrangements of blocks where these forces are significant. Fahiman claimed that "80% of

the performance" of his system derived from the level of detail in the model it was given of

a particular situation, while the remainder came from the planning knowledge embedded in

the system. Further, he claimed that the planning aspects are greatly simplified by having

the detailed models. Ilia system is probably unable to deal with real-world problems, but

it is much closer than the other planning systems mentioned above.

Moravec (1980) programmed a mobile robot to navigate through a cluttered environ-

ment using a visual map. It took into account errors and their effects at many stages

of its computations. Because of its simple model of the world as clusters of points with

known three space coordinates it had to be very generous in enclosing them with spheres

to be avoided. It had a self model of how commands to its motors would affect its three

dimensional location and orientation. This model took into account frictional forces, and

errors, but always assumed worst case errors to analyze the possible outcomes. Features

that were located by its nine eyes were also considered to be prone to error. All of Moravec's

computations were of the form of propagating errors forward, then checking the result.

Taylor (1976) has carried out by far the most realistic analysis or errors in robot

planning to date. He used some symbolic geometric reasoning techniques, and many

powerful numerical techniques. The example in section 2.1 of this paper is originally

due to Taylor. His work differs from that here, in that he essentially propagated errors

and tolerances numerically forward through a physical situation, then checked at the end

77

.

whether such things as applicability conditions were met. If not, the plan was either rejected

or modified at the point where the applicabilty condition was violated (e.g. initiate a spiral

search using force sensing to find the hole for the screw to fit in).

The methods presented in this paper have their roots in Taylor's work. Instead of

numerical computation in one direction, the computation (of the constraints) is symbolic;

the computations can be proceed in any chosen direction.

Ambler and Popplestone (1975) and Popplestone, Ambler and Belles (1980) have de-

veloped an assembly programming system which has many elements of planning in it.

They use geometric models of objects and infer spatial locations and orientations of parts

from relationships between them (e.g. "against" or "fits"). They do not take into account

tolerances, but instead work with nominal representations of distances and angles. Within

the framework of this paper much of what they do can be characterized as finding con-

straints on plan variables.

6.2 Integration of planning and checklig.

The details of how the implemented plan checker propagates information from plan

island to plan island, and exactly how it might fit in with an automatic planning system

were to a great extent ignored in this paper. That is largely because there are many ways

to integrate such plan checkers with planning systems.

A plan checker such as presented here could be integrated with a robot programming

language at a number of different levels. The programmer might be required to model

explictly the uncertainty effects of each individual motion command, along with providing

explicit pre -conditions on the applicability of that motion. The plan checker could then

treat every motion command as an individual plan island in a sequence of planned steps,

check its validity and propagate the uncertainties to the next motion command. Like a

smart compiler it could provide error messages about why the sequence of motions might

be invalid. In a higher level robot programming language which included geometric models

To

• ° " . ,

of the manipulator and objects in the world, applicability and geometric constraints could

be inferred more automatically by examing the motion statements. Again, advice could be

given to the human programmer concerning critical points in the program where sensing

was needed, or new motion commands were required.

A more automatic planning system culd also benefit from the plan checking approach

presented in this paper. Both Lozano-Prez (1976) and Taylor (1976) have discussed

planning systems which expand skeleton program fragments into complete robot programs

by taking into account the constraints implied by the geometry of the particular world

instance. Often there are decisions to be made in fleshing out such skeletons which must

rely on global interactions. The plan checker presented here could be used as such a decision

tool. At the same time it can be used as the "test" part of a "generate and test" approach

which the planner might use for decisions which its expertise gives no guidance.

The RAPT system of Popplestone, Ambler and Bellos (1980) takes over some of the

planning burden from the human programmer. From the discussion of the previous section

01 it is clear that much of what the plan checker does is in the spirit of the RAPT system's

approach to planning by solving relational constraints. It seems that a plan checker

following the framework described in this paper could be naturally built on top of RAPT.

6.3 The form of constraints.

The constraints used in the implemented plan checker are all algebraic inequalities.

Ideally one would like to find ways to express much more geometric constraints and develop

partial decision procedures that could deal with them in a manner adequate for using the

model of plans presented in this paper. The algebraic constraints used to date, constrain

parameterizations of, essentially, "topologically" equivalent situations. They give no hint

how to talk about classes of states whose members include radically different topologies.

The model of plans (but not of sensors) given in section 3 is independent of the variables

being real--valued or the constraints being inequalities. This gives some hope that it may be

L," 79

i"

possible to extend the plan checking formalism into the area of geometric checking, besides

the the purely algebraic aspects presented here.

6.4 Summary.

This paper has concentrated on the algebraic aspects of robot plans that include explicit

models of uncertainties in the physical world. Earlier work (Brooks (1981a)) has shown how

to map from the geometry of a world model to the algebraic aspects studied here. A formal

model of plans was developed, and a formal model of a plan checker followed. The details

of implementing a particular plan checker were discussed, and it was shown that the plan

checker could check the plan, constrain certain decisions and introduce sensing in order to

ensure that the plan would work.

Acknowledgements

The presentation of the work in this paper has benefited materially from careful

readings of drafts by J. Michael Brady and TomA. Losano-Pi4res.

so

1

Rererences

Albus, J. S. and Evans, J. M. 1976. Robot Sytems, Scientific American, Feb., pp.

76-86B.

Ambler, A. P. and Popplestone, R. J. 1975. Inferring the Positions of Bodies from

Spccified Spatial Relationships, Artificial Intelligence (6):175-208.

Bledsoe, W. W. 1975. A New Method for Proving Certain Presburger Formulas, IJCAI-

75, Tibilsi, Georgia, U.S.S.R., Sept., pp. 15-21.

Brooks, R. A. 1981a. Symbolic Reasoning Among 3-D Models and 2-D Images,

Artificial Intelligence (17):285-348.

Brooks, R. A. 1981b. Symbolic Reasoning Among 3-D Models and 2-D Images, Ph.D.

dissertation, Stanford AIM--343, June.

Drake, S. 1977. Using Compliance in Lieu of Sensory Feedback for Automatic

Assembly, Charles Stark Draper Lab. Report T--657, Sept.

Fahlman, S. E. 1973. A Planning System for Robot Construction Tasks, M.S. disser-
tation, MIT Al TR--283, May.

Lozano--P6rez, T. 1976. The Design of a Mechanical Assembly System, M.S. disserta-

tion, MIT, A]-TR--397, Dec.

Minsky, M. 1963. Steps Toward Artificial Intelligence, in Computers and Thought, J.

Feldman and E. A. Feigenbaum (eds.), McGraw-Hill.

Moravec, H. P. 1980. Obstacle Avoidance and Navigation in the Real World by a

Seeing Robot Rover, Ph.D. dissertation, Stanford AIM-340, Sept.

81

"1 - " " , . "

Popplestone, R. J., Ambler, A. P. and l3ellos, I. M. 1980. An Interpreter for a Language

for Describing Assemblies, Artificial Intelligence (14):79-107.

Sacerdoti, E. D. 1974. Planning in a Hierarchy of Abstraction Spaces, Artificial

Intelligence (5):115-135.

Sacerdoti, E. D. 1977. A Structure for Plans and Behavior, American Elsevier.

Salisbury, J. K. 1980. Active Stiffness Control of a Manipulator in Cartesian

Coordinates, 19th IEEE Cqnference on Decision and Control, Albuquerque NM, Dec.

Shostak, R. E. 1977. On the SUP-INF Method for Proving Presburger Formula&,

JACM (24):529-543.

Stefik, M. 1981. Planning With Constraints, Ph. D. dissertation, Stanford, HPP-80--2,

Jan.

Sussman, G. J. 1975. A Computer Model of Skill Aquisition, American Elsevier.

Taylor, R. I. 1976. A Synthesis of Manipulator Control Programs from Task-Level

Specifications, Ph.D. dissertation, Stanford AIM-282, July.

82

""4

Appendix

The example introduced in section 2.2 and referred to throughout the paper has been

checked by an implemented plan checker. The plan checker runs on a Lisp Machine at the

Artificial Intelligence Laboratory at the Massachusetts Institute of Technology. Below is

given the input specification to the checker which describes the four coupled plans. This

was generated by hand, but in the future may be generated as the product of a task level

planning system.

First the plan data-base is initialized and then the named physical quantities are

declared. The entries P05 and UNC simply declare the postfixes to be used in generating

internal variable names, so that internal data structures can more easily be debugged. The

POSITION entry defines the type of each named physical quantities (another example might

be ANGLE).

.;; example of four coupled plans

(INITIALIZE- PLAN-DATA-BASE)0*
; named physical quantitites

(NPQDEC BOX POSITION POS UNC)
(NPQDEc LID POSITION POS UNC)

(NPQDEC BOLT POSITION POS UNC)

Functions are then defined to specify the uncertainty behavior of the manipulator.

There is no specific model of the manipu!ator used by the plan checker at this level. The

4 manipulator behavior is encoded in the sets of constraints C9 .

.;; upper and lower bounds on manipulator uncertainty

(FUNDEF EL (X)
(MAX (. (* 0.0002216 X) -0.043262) ((* 0.0009857 X) -0.063329)))I

(FUNDEF EH (X)
(MIN (+ (* -0.0002253 X) 0.043262) ((* -0.0009895 X) 0.063329)))

* The error characteristics of the sensor are defined, and then a model of the sensor itself

83

S

Im nmIii i l mJII Mmi j

is given. The model is in terms of its error characteristics and the type of named physical

quantities which it can measure.

;;; sensor and bounds on its errors.

(FUNDEF LS (X) C* -0.0004 X))
(FUNDEF RS (X) (* 0.0004 X))

(DEFSENSOR CAMERA LS RS (POSITION))

Now the four plans are defined. There are up to four slots defined for each plan.

NPQ-INIT is a list of named physical quantities which describe the state of the world at

entry to the plan. NPQ-ADDED-DEFS is a list of pairs describing named physical quantities

introduced into the world state by the action of the plan. The first element of each pair is

the name or the new quantity and the second is an expression whose nominal value will be

used as a nominal value for the introduced quantity. Thus in plan A the lid is to be placed

in the same nominal place as the box. The slots ABSTRACT-CA and ABSTRACT-CG describe

the constraint sets CA and Cg in terms of the named physical quantities. During the plan

checking process they will be expanded in terms of plan and uncertainty variables. As

sensing operations get introduced, those expansions will change.

;; plan definitions

(DEFPLAN PLANA
NPQ-INIT '(BOX-POSITION)
NPQ-ADDED-DEFS '((LID-POSITION BOX-POSITION))
ABSTRACT-CA '((IN (NOMINAL LID-POSITION) 12.0 36.0))
ABSTRACT-CG '((IN (UNCERTAINTY LID-POSITION)

(EL (NOMINAL LID-POS1TIOW))
(EN (NOMINAL LID-POSITION)))))

(DEFPLAN PLANB
NPQ-INIT '(BOX-POSITION LID-POSITION)
ABSTRACT-CA '((IN (- BOX-POSITION LID-POSITION) -1.0 1.0)))

84

(DEFPLAN PLANC
NPQ-INIT '(BOX-POSITION LID-POSITION)

NPQ-ADDED-DEFS '((BOLT-POSITION LID-POSITION))
ABSTRACT-CA '((IN (NOMINAL BOLT-POSITION) 12.0 36.0))
ABSTRACT-CG '((IN (UNCERTAINTY BOLT-POSITION)

(EL (NOMINAL BOLT-POSITION))
(EH (NOMINAL BOLT-POSITION)))))

(DEFPLAN PLAND
NPQ-INIT '(BOX-POSITION LID-POSITION BOLT-POSITION)
ABSTRACT-CA '((IN (- BOLT-POSITION LID-POSITION)

(Y -7. 64.)
(9 7. 64.))

(IN (- LID-POSITION BOX-POSITION)

-. (-3. 64.)
(3. 64.))))

Finally, the initial state or the world is specified, and plan A is appropriately initialised.

The slot NPQ-LIST is filled with a list of named physical quantities corresponding to physical

realities in the world's initial state, while ABSTRACT-CS is a list of constraints which describe

the possible initial states of the world.

initial state of the world

(INITIALIZE-PLAN PLANA
NPQ-LIST '(BOX-POSITION)
ABSTRACT-CS '((IN (NOMINAL BOX-POSITION) 12.0 36.0)

(IN (UNCERTAINTY BOX-POSITION)

(EL (NOMINAL BOX-POSITION))
(EH (NOMINAL BOX-POSITION)))))

85

